"Q-감마함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
(사용자 2명의 중간 판 27개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | + | * [[감마함수]]의 q-analogue | |
− | + | ||
− | + | ||
− | * [ | + | ==정의== |
+ | * q-감마함수를 다음과 같이 정의 | ||
+ | :<math>\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}</math> | ||
+ | * 자연수 n에 대하여, <math>z=n+1</math> 일 때, | ||
+ | :<math>\Gamma_q(n+1)= \frac{(q;q)_{\infty}}{(q^{n+1};q)_{\infty}}(1-q)^{-n}= \frac{(q;q)_n}{(1-q)^n}=[n]_q!</math> | ||
− | + | ||
− | + | ||
− | + | ==정의를 이렇게 하는 이유== | |
− | * 감마함수가 팩토리얼의 | + | * 감마함수가 팩토리얼의 확장이므로 [[q-팩토리얼]]의 정의를 이용하자:<math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}</math> |
− | * [[Pochhammer | + | * [[q-Pochhammer 기호]] 를 사용하여 더 일반적인 경우의 n 에 대하여 쓸 수 있다:<math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}</math>[[Pochhammer 기호와 캐츠(Kac) 기호|캐츠(Kac) 기호]] 를 써서 표현하면,:<math>[n]_q!=\frac{(1-q)_q^n}{(1-q)^n}=\frac{(1-q)_q^{\infty}}{(1-q)^n(1-q^{n+1})_q^{\infty}}</math> |
− | * 위의 | + | * 위의 식은 <math>n</math>이 반드시 자연수가 아니어도 성립하므로, q-감마함수를 다음과 같이 정의할 수 있다 |
+ | :<math>\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}</math> | ||
+ | :<math>\Gamma_q(z)= \frac{(1-q)_q^{\infty}}{(1-q^{z})_q^{\infty}}(1-q)^{1-z}</math> | ||
+ | :<math>\Gamma_q(z) = (1-q)^{1-z}\prod_{n=0}^\infty \frac{1-q^{n+1}}{1-q^{z+n}}. </math> | ||
− | + | ||
− | + | ||
− | + | ==잭슨 적분과 q-감마함수== | |
+ | * http://www.stephenoney.com/papers/JacksonIntegral.pdf | ||
+ | |||
− | + | ||
− | + | ==역사== | |
− | + | * [[수학사 연표]] | |
− | + | ||
− | + | ||
− | + | ==메모== | |
− | + | ||
− | + | ||
− | + | ==관련된 항목들== | |
− | + | * [[분할수의 생성함수(오일러 함수)]] | |
+ | |||
− | + | ||
− | + | ==사전 형태의 자료== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/Elliptic_gamma_function | * http://en.wikipedia.org/wiki/Elliptic_gamma_function | ||
* http://en.wikipedia.org/wiki/Q-gamma_function | * http://en.wikipedia.org/wiki/Q-gamma_function | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | |||
− | |||
− | |||
− | + | ||
− | + | ==관련논문== | |
− | < | + | * Moak, Daniel S. 1984. “The <math>q</math>-analogue of Stirling’s formula”. <em>The Rocky Mountain Journal of Mathematics</em> 14 (2): 403–413. doi:[http://dx.doi.org/10.1216/RMJ-1984-14-2-403 10.1216/RMJ-1984-14-2-403]. |
+ | [[분류:q-급수]] | ||
+ | [[분류:특수함수]] | ||
− | + | ==메타데이터== | |
− | + | ===위키데이터=== | |
− | * | + | * ID : [https://www.wikidata.org/wiki/Q615862 Q615862] |
− | + | ===Spacy 패턴 목록=== | |
− | + | * [{'LOWER': 'elliptic'}, {'LOWER': 'gamma'}, {'LEMMA': 'function'}] | |
− | * [ |
2021년 2월 17일 (수) 03:51 기준 최신판
개요
- 감마함수의 q-analogue
정의
- q-감마함수를 다음과 같이 정의
\[\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}\]
- 자연수 n에 대하여, \(z=n+1\) 일 때,
\[\Gamma_q(n+1)= \frac{(q;q)_{\infty}}{(q^{n+1};q)_{\infty}}(1-q)^{-n}= \frac{(q;q)_n}{(1-q)^n}=[n]_q!\]
정의를 이렇게 하는 이유
- 감마함수가 팩토리얼의 확장이므로 q-팩토리얼의 정의를 이용하자\[[n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}\]
- q-Pochhammer 기호 를 사용하여 더 일반적인 경우의 n 에 대하여 쓸 수 있다\[[n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}\]캐츠(Kac) 기호 를 써서 표현하면,\[[n]_q!=\frac{(1-q)_q^n}{(1-q)^n}=\frac{(1-q)_q^{\infty}}{(1-q)^n(1-q^{n+1})_q^{\infty}}\]
- 위의 식은 \(n\)이 반드시 자연수가 아니어도 성립하므로, q-감마함수를 다음과 같이 정의할 수 있다
\[\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}\] \[\Gamma_q(z)= \frac{(1-q)_q^{\infty}}{(1-q^{z})_q^{\infty}}(1-q)^{1-z}\] \[\Gamma_q(z) = (1-q)^{1-z}\prod_{n=0}^\infty \frac{1-q^{n+1}}{1-q^{z+n}}. \]
잭슨 적분과 q-감마함수
역사
메모
관련된 항목들
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Elliptic_gamma_function
- http://en.wikipedia.org/wiki/Q-gamma_function
관련논문
- Moak, Daniel S. 1984. “The \(q\)-analogue of Stirling’s formula”. The Rocky Mountain Journal of Mathematics 14 (2): 403–413. doi:10.1216/RMJ-1984-14-2-403.
메타데이터
위키데이터
- ID : Q615862
Spacy 패턴 목록
- [{'LOWER': 'elliptic'}, {'LOWER': 'gamma'}, {'LEMMA': 'function'}]