"모듈라 형식(modular forms)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 4개는 보이지 않습니다)
7번째 줄: 7번째 줄:
  
 
===기호===
 
===기호===
* $\mathbb{H}=\{\tau\in \mathbb{C}|\Im \tau>0\}$
+
* <math>\mathbb{H}=\{\tau\in \mathbb{C}|\Im \tau>0\}</math>
* [[모듈라 군(modular group)]] $\Gamma=SL(2, \mathbb Z) = \left \{ \left. \left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\right| a, b, c, d \in \mathbb Z,\ ad-bc = 1 \right \}$
+
* [[모듈라 군(modular group)]] <math>\Gamma=SL(2, \mathbb Z) = \left \{ \left. \left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\right| a, b, c, d \in \mathbb Z,\ ad-bc = 1 \right \}</math>
* $\operatorname{PSL}(2,\mathbb{Z})=\operatorname{SL}(2,\mathbb{Z})/\{\pm I\}$ acts on $\mathbb{H}$ by
+
* <math>\operatorname{PSL}(2,\mathbb{Z})=\operatorname{SL}(2,\mathbb{Z})/\{\pm I\}</math> acts on <math>\mathbb{H}</math> by
 
:<math>\tau\mapsto\frac{a\tau+b}{c\tau+d}</math>
 
:<math>\tau\mapsto\frac{a\tau+b}{c\tau+d}</math>
for $\left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\in \operatorname{SL}(2,\mathbb{Z})$
+
for <math>\left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\in \operatorname{SL}(2,\mathbb{Z})</math>
* $SL(2, \mathbb Z)$ is generated by $S$ and $T$
+
* <math>SL(2, \mathbb Z)</math> is generated by <math>S</math> and <math>T</math>
 
:<math>S=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},T=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} </math>
 
:<math>S=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},T=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} </math>
 
:<math>S: \tau\mapsto -1/\tau,T: \tau\mapsto \tau+1</math>
 
:<math>S: \tau\mapsto -1/\tau,T: \tau\mapsto \tau+1</math>
19번째 줄: 19번째 줄:
 
==모듈라 형식==
 
==모듈라 형식==
 
;def  
 
;def  
A holomorphic function $f:\mathbb{H}\to \mathbb{C}$ is a modular form of weight $k$ (w.r.t. $SL(2, \mathbb Z)$) if
+
A holomorphic function <math>f:\mathbb{H}\to \mathbb{C}</math> is a modular form of weight <math>k</math> (w.r.t. <math>SL(2, \mathbb Z)</math>) if
 
# <math>f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{k} f(\tau)</math>
 
# <math>f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{k} f(\tau)</math>
# $f$ is "holomorphic at the cusp", i.e. it has a Fourier expansion of the following form
+
# <math>f</math> is "holomorphic at the cusp", i.e. it has a Fourier expansion of the following form
$$
+
:<math>
 
f(\tau)=\sum_{n=0}^{\infty}c(n)e^{2\pi i n \tau}
 
f(\tau)=\sum_{n=0}^{\infty}c(n)e^{2\pi i n \tau}
$$
+
</math>
  
 
+
  
 
==예==
 
==예==
* [[격자의 세타함수|even unimodular 격자의 세타함수]]
+
* [[격자의 세타함수|even unimodular 격자의 세타함수]]
 
* [[판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)]]
 
* [[판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)]]
 
:<math>\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots</math>
 
:<math>\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots</math>
36번째 줄: 36번째 줄:
 
===아이젠슈타인 급수===
 
===아이젠슈타인 급수===
 
* [[아이젠슈타인 급수(Eisenstein series)]]
 
* [[아이젠슈타인 급수(Eisenstein series)]]
* for an integer $k\geq 2$, define
+
* for an integer <math>k\geq 2</math>, define
$$
+
:<math>
 
G_{2k}(\tau) : =\sum_{(m,n)\in \mathbb{Z}^2\backslash{(0,0)}}\frac{1}{(m+n\tau )^{2k}}
 
G_{2k}(\tau) : =\sum_{(m,n)\in \mathbb{Z}^2\backslash{(0,0)}}\frac{1}{(m+n\tau )^{2k}}
$$
+
</math>
* Eisenstein series : normalization of $G_{2k}$
+
* Eisenstein series : normalization of <math>G_{2k}</math>
 
:<math>E_{2k}(\tau):=\frac{G_{2k}(\tau)}{2\zeta (2k)}= 1+\frac {2}{\zeta(1-2k)}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)</math>
 
:<math>E_{2k}(\tau):=\frac{G_{2k}(\tau)}{2\zeta (2k)}= 1+\frac {2}{\zeta(1-2k)}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)</math>
where $\zeta$ denotes the Riemann zeta function and $\sigma_r(n)=\sum_{d|n}d^r$
+
where <math>\zeta</math> denotes the Riemann zeta function and <math>\sigma_r(n)=\sum_{d|n}d^r</math>
* this is a modular form of weight $2k$
+
* this is a modular form of weight <math>2k</math>
 
* for example
 
* for example
 
:<math>E_4(\tau)= 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n}=1 + 240 q + 2160 q^2 + \cdots </math>
 
:<math>E_4(\tau)= 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n}=1 + 240 q + 2160 q^2 + \cdots </math>
49번째 줄: 49번째 줄:
  
  
 
+
  
 
==구조 정리==
 
==구조 정리==
 
;정리
 
;정리
$M_k$ be the space of modular forms of weight $k$ and $M:=\bigoplus_{k\in \mathbb{Z}_{\geq 0}} M_k$. We have
+
<math>M_k</math> be the space of modular forms of weight <math>k</math> and <math>M:=\bigoplus_{k\in \mathbb{Z}_{\geq 0}} M_k</math>. We have
 
:<math>M=\mathbb{C}[E_4,E_6]</math>
 
:<math>M=\mathbb{C}[E_4,E_6]</math>
 
* 차원 생성 함수
 
* 차원 생성 함수
$$
+
:<math>
 
\sum_{k=0}^{\infty}\dim M_k x^k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots
 
\sum_{k=0}^{\infty}\dim M_k x^k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots
$$
+
</math>
* 가령 <math>\{E_6^2, \Delta\}</math>는 $M_{12}$의 기저가 된다. 여기서 $\Delta=E_4^3-E_6^2$
+
* 가령 <math>\{E_6^2, \Delta\}</math>는 <math>M_{12}</math>의 기저가 된다. 여기서 <math>\Delta=E_4^3-E_6^2</math>
  
 
==메모==
 
==메모==
70번째 줄: 70번째 줄:
 
</blockquote>
 
</blockquote>
  
 
+
  
 
==역사==
 
==역사==
77번째 줄: 77번째 줄:
  
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
85번째 줄: 85번째 줄:
 
* [[격자의 세타함수]]
 
* [[격자의 세타함수]]
 
* [[헤케 연산자(Hecke operator)]]
 
* [[헤케 연산자(Hecke operator)]]
 
+
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
95번째 줄: 95번째 줄:
  
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
 
* http://ko.wikipedia.org/wiki/보형형식
 
* http://ko.wikipedia.org/wiki/보형형식
 
+
  
 
==리뷰논문, 에세이, 강의노트==
 
==리뷰논문, 에세이, 강의노트==
* Finch, [http://www.people.fas.harvard.edu/~sfinch/csolve/frs.pdf Modular Forms on $SL_2(\mathbb{Z})$]
+
* Finch, [http://www.people.fas.harvard.edu/~sfinch/csolve/frs.pdf Modular Forms on <math>SL_2(\mathbb{Z})</math>]
* Vaughan, [http://www.personal.psu.edu/users/r/c/rcv4/567c09.pdf modular forms I], [http://www.personal.psu.edu/users/r/c/rcv4/567c10.pdf modular forms II]
+
* Vaughan, [http://www.personal.psu.edu/users/r/c/rcv4/567c09.pdf modular forms I], [http://www.personal.psu.edu/users/r/c/rcv4/567c10.pdf modular forms II]
  
  
 
==관련논문==
 
==관련논문==
 +
* Kevin Buzzard, Computing weight one modular forms over <math>\C</math> and <math>\Fpbar</math>, arXiv:1205.5077 [math.NT], May 23 2012, http://arxiv.org/abs/1205.5077
 +
* Kevin Buzzard, Alan Lauder, A computation of modular forms of weight one and small level, arXiv:1605.05346 [math.NT], May 17 2016, http://arxiv.org/abs/1605.05346
 +
* Schulze-Pillot, Rainer, and Abdullah Yenirce. “Petersson Products of Bases of Spaces of Cusp Forms and Estimates for Fourier Coefficients.” arXiv:1602.01803 [math], February 4, 2016. http://arxiv.org/abs/1602.01803.
 
* Bellaiche, Joel, and Kannan Soundararajan. “The Number of Non-Zero Coefficients of Modular Forms (mod P).” arXiv:1508.02095 [math], August 9, 2015. http://arxiv.org/abs/1508.02095.
 
* Bellaiche, Joel, and Kannan Soundararajan. “The Number of Non-Zero Coefficients of Modular Forms (mod P).” arXiv:1508.02095 [math], August 9, 2015. http://arxiv.org/abs/1508.02095.
 
* Jorgenson, Jay, Lejla Smajlovic, and Holger Then. “Certain Aspects of Holomorphic Function Theory on Some Genus Zero Arithmetic Groups.” arXiv:1505.06042 [math], May 22, 2015. http://arxiv.org/abs/1505.06042.
 
* Jorgenson, Jay, Lejla Smajlovic, and Holger Then. “Certain Aspects of Holomorphic Function Theory on Some Genus Zero Arithmetic Groups.” arXiv:1505.06042 [math], May 22, 2015. http://arxiv.org/abs/1505.06042.

2020년 12월 28일 (월) 02:21 기준 최신판

개요

  • 푸앵카레 상반평면에서 정의된 해석함수
  • 모듈라 성질과 cusp에서의 푸리에전개를 가짐
  • 정수론에서 많은 중요한 역할


기호

  • \(\mathbb{H}=\{\tau\in \mathbb{C}|\Im \tau>0\}\)
  • 모듈라 군(modular group) \(\Gamma=SL(2, \mathbb Z) = \left \{ \left. \left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\right| a, b, c, d \in \mathbb Z,\ ad-bc = 1 \right \}\)
  • \(\operatorname{PSL}(2,\mathbb{Z})=\operatorname{SL}(2,\mathbb{Z})/\{\pm I\}\) acts on \(\mathbb{H}\) by

\[\tau\mapsto\frac{a\tau+b}{c\tau+d}\] for \(\left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\in \operatorname{SL}(2,\mathbb{Z})\)

  • \(SL(2, \mathbb Z)\) is generated by \(S\) and \(T\)

\[S=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},T=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] \[S: \tau\mapsto -1/\tau,T: \tau\mapsto \tau+1\]


모듈라 형식

def

A holomorphic function \(f:\mathbb{H}\to \mathbb{C}\) is a modular form of weight \(k\) (w.r.t. \(SL(2, \mathbb Z)\)) if

  1. \(f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{k} f(\tau)\)
  2. \(f\) is "holomorphic at the cusp", i.e. it has a Fourier expansion of the following form

\[ f(\tau)=\sum_{n=0}^{\infty}c(n)e^{2\pi i n \tau} \]


\[\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\]


아이젠슈타인 급수

\[ G_{2k}(\tau) : =\sum_{(m,n)\in \mathbb{Z}^2\backslash{(0,0)}}\frac{1}{(m+n\tau )^{2k}} \]

  • Eisenstein series : normalization of \(G_{2k}\)

\[E_{2k}(\tau):=\frac{G_{2k}(\tau)}{2\zeta (2k)}= 1+\frac {2}{\zeta(1-2k)}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)\] where \(\zeta\) denotes the Riemann zeta function and \(\sigma_r(n)=\sum_{d|n}d^r\)

  • this is a modular form of weight \(2k\)
  • for example

\[E_4(\tau)= 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n}=1 + 240 q + 2160 q^2 + \cdots \] \[E_6(\tau)=1- 504\sum_{n=1}^\infty \sigma_5(n) q^{n}=1 - 504 q - 16632 q^2 - \cdots \]



구조 정리

정리

\(M_k\) be the space of modular forms of weight \(k\) and \(M:=\bigoplus_{k\in \mathbb{Z}_{\geq 0}} M_k\). We have \[M=\mathbb{C}[E_4,E_6]\]

  • 차원 생성 함수

\[ \sum_{k=0}^{\infty}\dim M_k x^k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots \]

  • 가령 \(\{E_6^2, \Delta\}\)는 \(M_{12}\)의 기저가 된다. 여기서 \(\Delta=E_4^3-E_6^2\)

메모

\[d(\frac{az+b}{cz+d})=\frac{(acz+ad-acz-bc)}{(cz+d)^2}dz=(cz+d)^{-2}dz\]

  • 마르틴 아티클러 (Martin Eichler)는 다음과 같은 말을 남김

There are five elementary arithmetical operations: addition, subtraction, multiplication, division, and… modular forms.

다섯개의 기본적인 산술적 연산이 있다 : 더하기, 빼기, 곱하기, 나누기, 그리고 ... 모듈라 형식.


역사



관련된 항목들


매스매티카 파일 및 계산 리소스


수학용어번역

  • modular - 대한수학회 수학용어집



사전 형태의 자료


리뷰논문, 에세이, 강의노트


관련논문

  • Kevin Buzzard, Computing weight one modular forms over \(\C\) and \(\Fpbar\), arXiv:1205.5077 [math.NT], May 23 2012, http://arxiv.org/abs/1205.5077
  • Kevin Buzzard, Alan Lauder, A computation of modular forms of weight one and small level, arXiv:1605.05346 [math.NT], May 17 2016, http://arxiv.org/abs/1605.05346
  • Schulze-Pillot, Rainer, and Abdullah Yenirce. “Petersson Products of Bases of Spaces of Cusp Forms and Estimates for Fourier Coefficients.” arXiv:1602.01803 [math], February 4, 2016. http://arxiv.org/abs/1602.01803.
  • Bellaiche, Joel, and Kannan Soundararajan. “The Number of Non-Zero Coefficients of Modular Forms (mod P).” arXiv:1508.02095 [math], August 9, 2015. http://arxiv.org/abs/1508.02095.
  • Jorgenson, Jay, Lejla Smajlovic, and Holger Then. “Certain Aspects of Holomorphic Function Theory on Some Genus Zero Arithmetic Groups.” arXiv:1505.06042 [math], May 22, 2015. http://arxiv.org/abs/1505.06042.