"자렘바의 추측"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 하나는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==메모==
 
==메모==
Zaremba's conjecture (1971) states that every positive integer number d can be represented as a denominator of a finite continued fraction $b/d = [d1,d2,...,dk]$, with all partial quotients $d1,d2,\cdots,dk$ being bounded by an absolute constant $A$.
+
Zaremba's conjecture (1971) states that every positive integer number d can be represented as a denominator of a finite continued fraction <math>b/d = [d_1,d_2,...,d_k]</math>, with all partial quotients <math>d_1,d_2,\cdots,d_k</math> being bounded by an absolute constant <math>A</math>.
  
 
==관련논문==
 
==관련논문==

2020년 11월 16일 (월) 04:22 기준 최신판

메모

Zaremba's conjecture (1971) states that every positive integer number d can be represented as a denominator of a finite continued fraction \(b/d = [d_1,d_2,...,d_k]\), with all partial quotients \(d_1,d_2,\cdots,d_k\) being bounded by an absolute constant \(A\).

관련논문

  • Kan, I. D. ‘A Strengthening of a Theorem of Bourgain-Kontorovich-IV’. arXiv:1503.06132 [math], 20 March 2015. http://arxiv.org/abs/1503.06132.
  • Bourgain, Jean, and Alex Kontorovich. ‘On Zaremba’s Conjecture’. Annals of Mathematics 180, no. 1 (1 July 2014): 137–96. doi:10.4007/annals.2014.180.1.3. http://arxiv.org/abs/1103.0422.