"BGG resolution"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
 
(다른 사용자 한 명의 중간 판 91개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==example of BGG resolution : sl_2==
+
==introduction==
 +
* <math>L(\cdot)</math> : simple module, <math>V(\cdot)</math> : Verma module
 +
* Weyl character formula. For <math>\lambda\in \Lambda^{+}</math>,
 +
:<math>
 +
\operatorname{ch}L(\lambda)=\sum_{w \in W}(-1)^{\ell(w)}\operatorname{ch} M(w\cdot \lambda)
 +
</math>
 +
* goal : realize this formula as an Euler characteristic
 +
* The BGG resolution resolves a finite-dimensional simple <math>\mathfrak{g}</math>-module <math>L(\lambda)</math> by direct sums of Verma modules indexed by weights "of the same length" in the orbit <math>W\cdot \lambda</math>
 +
;thm (Bernstein-Gelfand-Gelfand Resolution).
 +
Let <math>\lambda\in \Lambda^{+}</math>. There is an exact sequence of Verma modules
 +
:<math>
 +
0 \to M({w_0\cdot \lambda})\to \cdots \to \bigoplus_{w\in W, \ell(w)=k}M({w\cdot \lambda})\to \cdots \to M({\lambda})\to L({\lambda})\to 0
 +
</math>
 +
where <math>\ell(w)</math> is the length of the Weyl group element <math>w</math>, <math>w_0</math> is the Weyl group element
 +
of maximal length. Here <math>\rho</math> is half the sum of the positive roots.
  
* <math>W_{\lambda}</math> : irreducible highest weight module
+
==applications==
* <math>V_{\lambda}</math> : Verma modules<br>
+
* This is used to compute the cohomologies of <math>\mathfrak{n}^+</math>.
** note that the Verma modules are free modules of rank 1 over <math>\mathbb{C}[F]</math>
+
* see [[Kostant theorem on Lie algebra cohomology of nilpotent subalgebra]]
* <math>\lambda ,-2+\lambda ,\cdots, -\lambda, -\lambda-2,\cdots</math>
 
* <math>W_{\lambda}=V_{\lambda}/V_{-\lambda-2}</math>
 
*  BGG resolution<br><math>0\to V_{-\lambda-2}\to V_{\lambda}\to W\to 0</math><br>
 
* number of modules = 2 (=order of Weyl group in general)
 
* character of W = alternating sum of characters of Verma modules<br><math>\chi_{W_{\lambda}}=\chi_{V_{\lambda}}-\chi_{V_{-\lambda-2}}=\frac{q^{\lambda}}{1-q^{-2}}-\frac{q^{-\lambda-2}}{1-q^{-2}}</math><br>
 
* comparison with [[Weyl-Kac character formula]]<br><math>ch(W_{\lambda})=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) }{e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}}=\frac{q^{\lambda+1}-q^{-\lambda-1}}{q^{1}(1-q^{-2})}</math><br> where I used <math>\rho=1,\alpha=2</math> and <math>w(\lambda+\rho)=-\lambda-\rho</math><br>
 
  
 
 
  
 
+
==generalization of BGG resolution==
 +
* There exist generalizations to symmetrizable Kac-Moody algebras, cf. [34].
 +
* Kempf obtained a resolution of finite-dimensional L(λ) in terms of the Grothendieck-Cousin complex in [26], which is dual to the BGG resolution.
 +
* This was extended by Kumar to arbitrary Kac-Moody algebras; he thus obtained the BGG resolution here, and computed the Weyl-Kac character formula and the cohomologies of n+ (cf. [30,§9.3]).
  
==maps between Verma modules==
+
==related items==
 +
* [[Talk on BGG resolution]]
 +
* [[Verma modules]]
 +
* [[BGG reciprocity]]
 +
* [[BGG category]]
 +
* [[Kostant theorem on Lie algebra cohomology of nilpotent radical]]
 +
* [[Bott-Borel-Weil Theorem]]
 +
* [[Koszul complex]]
  
* 2 conditions to have non-zero homomorphisms <math>V_{\lambda}\to V_{\mu}</math> between two Verma modules<br>
+
==books==
** <math>\lambda+\rho, \mu+\rho</math> are in the same orbit of Weyl group
+
* [30] Shrawan Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory, Birkhauser, Progress in Math. 204, Boston, 2002
** <math>V_{\lambda}\leq V_{\mu}</math>, i.e. <math>\lambda = \mu -\sum \alpha</math>, where the sum is over some positive roots.
+
* James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Grad. Stud. Math., 94, Amer. Math. Soc., Providence, RI, 2008.
*  example in SL2<br>
 
** <math>\lambda = \mu -2n</math>, <math>n=0,1,2,\cdots</math>
 
** <math>(\lambda+1)^2 = (\mu+1)^2</math>
 
  
 
+
 +
==expositions==
 +
* http://rvirk.com/notes/student/catObasics.pdf
 +
* BGG resolution http://www.math.columbia.edu/~woit/LieGroups-2012/vermamodules.pdf
 +
* Wang, Jing Ping. “Representations of sl(2,C) in the BGG Category O and Master Symmetries.” arXiv:1408.3437 [nlin], August 14, 2014. http://arxiv.org/abs/1408.3437.
 +
* http://stanford.edu/~khare/EoM-BGG-O.pdf
  
 
+
==articles==
 +
* Pierre Julg, The Bernstein-Gelfand-Gelfand complex for rank one semi simple Lie groups as a Kasparov module, arXiv:1605.07408 [math.OA], May 24 2016, http://arxiv.org/abs/1605.07408
 +
* Griffeth, Stephen, and Emily Norton. “Character Formulas and Bernstein-Gelfand-Gelfand Resolutions for Cherednik Algebra Modules.” arXiv:1511.00748 [math], November 2, 2015. http://arxiv.org/abs/1511.00748.
 +
* Zelevinski, Resolvents, dual pairs, and character formulas http://www.ms.unimelb.edu.au/~ram/Resources/ResolventsDualPairsAndCharacterFormulas.html
 +
* [34] A. Rocha-Caridi, Splitting Criteria for <math>\mathfrak{g}</math>-modules induced from a parabolic and the Bernstein-Gelfand-Gelfand resolution of a finite-dimensional, irreducible <math>\mathfrak{g}</math>-module, Trans. Amer. Math. Soc.262 (1980), no. 2, 335–366
 +
* [26] G. Kempf, The Grothendieck-Cousin complex of an induced representation , Advances in Mathematics 29 (1978), 310–396
 +
* [31] Lepowsky, J. “A Generalization of the Bernstein-Gelfand-Gelfand Resolution.” Journal of Algebra 49, no. 2 (1977): 496–511.
 +
*  J. Bernstein, I. Gel'fand, and S. Gel'fand, A category of g-modules, Functional Anal. Appl. 10 (1976), 87-92
 +
* [5] Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Differential Operators on the Base Affine Space and a Study of <math>\mathfrak{g}</math>-Modules’. In Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), 21–64. Halsted, New York, 1975. http://www.ams.org/mathscinet-getitem?mr=0578996.
 +
* Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Structure of Representations That Are Generated by Vectors of Highest Weight’. Akademija Nauk SSSR. Funkcional\cprime Nyi Analiz I Ego Priloženija 5, no. 1 (1971): 1–9.
  
==books==
+
[[분류:Lie theory]]
 
+
[[분류:abstract concepts]]
* James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Grad. Stud. Math., 94, Amer. Math. Soc., Providence, RI, 2008.
+
[[분류:migrate]]

2020년 11월 16일 (월) 05:25 기준 최신판

introduction

  • \(L(\cdot)\) : simple module, \(V(\cdot)\) : Verma module
  • Weyl character formula. For \(\lambda\in \Lambda^{+}\),

\[ \operatorname{ch}L(\lambda)=\sum_{w \in W}(-1)^{\ell(w)}\operatorname{ch} M(w\cdot \lambda) \]

  • goal : realize this formula as an Euler characteristic
  • The BGG resolution resolves a finite-dimensional simple \(\mathfrak{g}\)-module \(L(\lambda)\) by direct sums of Verma modules indexed by weights "of the same length" in the orbit \(W\cdot \lambda\)
thm (Bernstein-Gelfand-Gelfand Resolution).

Let \(\lambda\in \Lambda^{+}\). There is an exact sequence of Verma modules \[ 0 \to M({w_0\cdot \lambda})\to \cdots \to \bigoplus_{w\in W, \ell(w)=k}M({w\cdot \lambda})\to \cdots \to M({\lambda})\to L({\lambda})\to 0 \] where \(\ell(w)\) is the length of the Weyl group element \(w\), \(w_0\) is the Weyl group element of maximal length. Here \(\rho\) is half the sum of the positive roots.

applications


generalization of BGG resolution

  • There exist generalizations to symmetrizable Kac-Moody algebras, cf. [34].
  • Kempf obtained a resolution of finite-dimensional L(λ) in terms of the Grothendieck-Cousin complex in [26], which is dual to the BGG resolution.
  • This was extended by Kumar to arbitrary Kac-Moody algebras; he thus obtained the BGG resolution here, and computed the Weyl-Kac character formula and the cohomologies of n+ (cf. [30,§9.3]).

related items

books

  • [30] Shrawan Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory, Birkhauser, Progress in Math. 204, Boston, 2002
  • James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Grad. Stud. Math., 94, Amer. Math. Soc., Providence, RI, 2008.


expositions

articles

  • Pierre Julg, The Bernstein-Gelfand-Gelfand complex for rank one semi simple Lie groups as a Kasparov module, arXiv:1605.07408 [math.OA], May 24 2016, http://arxiv.org/abs/1605.07408
  • Griffeth, Stephen, and Emily Norton. “Character Formulas and Bernstein-Gelfand-Gelfand Resolutions for Cherednik Algebra Modules.” arXiv:1511.00748 [math], November 2, 2015. http://arxiv.org/abs/1511.00748.
  • Zelevinski, Resolvents, dual pairs, and character formulas http://www.ms.unimelb.edu.au/~ram/Resources/ResolventsDualPairsAndCharacterFormulas.html
  • [34] A. Rocha-Caridi, Splitting Criteria for \(\mathfrak{g}\)-modules induced from a parabolic and the Bernstein-Gelfand-Gelfand resolution of a finite-dimensional, irreducible \(\mathfrak{g}\)-module, Trans. Amer. Math. Soc.262 (1980), no. 2, 335–366
  • [26] G. Kempf, The Grothendieck-Cousin complex of an induced representation , Advances in Mathematics 29 (1978), 310–396
  • [31] Lepowsky, J. “A Generalization of the Bernstein-Gelfand-Gelfand Resolution.” Journal of Algebra 49, no. 2 (1977): 496–511.
  • J. Bernstein, I. Gel'fand, and S. Gel'fand, A category of g-modules, Functional Anal. Appl. 10 (1976), 87-92
  • [5] Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Differential Operators on the Base Affine Space and a Study of \(\mathfrak{g}\)-Modules’. In Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), 21–64. Halsted, New York, 1975. http://www.ams.org/mathscinet-getitem?mr=0578996.
  • Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Structure of Representations That Are Generated by Vectors of Highest Weight’. Akademija Nauk SSSR. Funkcional\cprime Nyi Analiz I Ego Priloženija 5, no. 1 (1971): 1–9.