"Talk on Siegel theta series and modular forms"의 두 판 사이의 차이
imported>Pythagoras0 (→24차원) |
Pythagoras0 (토론 | 기여) |
||
(다른 사용자 한 명의 중간 판 15개는 보이지 않습니다) | |||
5번째 줄: | 5번째 줄: | ||
==modular forms== | ==modular forms== | ||
− | * | + | * <math>\mathbb{H}=\{\tau\in \mathbb{C}|\Im \tau>0\}</math> |
− | * modular group | + | * modular group <math>\Gamma=SL(2, \mathbb Z) = \left \{ \left. \left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\right| a, b, c, d \in \mathbb Z,\ ad-bc = 1 \right \}</math> |
− | * | + | * <math>\operatorname{PSL}(2,\mathbb{Z})=\operatorname{SL}(2,\mathbb{Z})/\{\pm I\}</math> acts on <math>\mathbb{H}</math> by |
:<math>\tau\mapsto\frac{a\tau+b}{c\tau+d}</math> | :<math>\tau\mapsto\frac{a\tau+b}{c\tau+d}</math> | ||
− | for | + | for <math>\left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\in \operatorname{SL}(2,\mathbb{Z})</math> |
;def | ;def | ||
− | A holomorphic function | + | A holomorphic function <math>f:\mathbb{H}\to \mathbb{C}</math> is a modular form of weight <math>k</math> (w.r.t. <math>SL(2, \mathbb Z)</math>) if |
# <math>f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{k} f(\tau)</math> | # <math>f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{k} f(\tau)</math> | ||
− | # | + | # <math>f</math> is "holomorphic at the cusp", i.e. it has a Fourier expansion of the following form |
− | + | :<math> | |
f(\tau)=\sum_{n=0}^{\infty}a(n)e^{2\pi i n \tau} | f(\tau)=\sum_{n=0}^{\infty}a(n)e^{2\pi i n \tau} | ||
− | + | </math> | |
===Eisenstein series=== | ===Eisenstein series=== | ||
− | * for an integer | + | * for an integer <math>k\geq 2</math>, define the Eisenstein series by |
− | + | :<math> | |
E_{2k}(\tau) : =\frac{1}{2}\sum_{ | E_{2k}(\tau) : =\frac{1}{2}\sum_{ | ||
\substack{ | \substack{ | ||
28번째 줄: | 28번째 줄: | ||
}} | }} | ||
\frac{1}{(c\tau+d )^{2k}} | \frac{1}{(c\tau+d )^{2k}} | ||
− | + | </math> | |
* Fourier expansion | * Fourier expansion | ||
:<math>E_{2k}(\tau):= 1+\frac {2}{\zeta(1-2k)}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)=1-\frac {4k}{B_{2k}}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)</math> | :<math>E_{2k}(\tau):= 1+\frac {2}{\zeta(1-2k)}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)=1-\frac {4k}{B_{2k}}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)</math> | ||
− | where | + | where <math>\zeta</math> denotes the Riemann zeta function, <math>B_k</math> Bernoulli number and <math>\sigma_r(n)=\sum_{d|n}d^r</math> |
− | * this is a modular form of weight | + | * this is a modular form of weight <math>2k</math> |
* for example | * for example | ||
:<math>E_4(\tau)= 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n}=1 + 240 q + 2160 q^2 + \cdots </math> | :<math>E_4(\tau)= 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n}=1 + 240 q + 2160 q^2 + \cdots </math> | ||
39번째 줄: | 39번째 줄: | ||
===the space of modular forms=== | ===the space of modular forms=== | ||
;thm | ;thm | ||
− | Let | + | Let <math>M_k</math> be the space of modular forms of weight <math>k</math> and <math>M:=\bigoplus_{k\in \mathbb{Z}_{\geq 0}} M_k</math>. We have |
:<math>M=\mathbb{C}[E_4,E_6]</math> | :<math>M=\mathbb{C}[E_4,E_6]</math> | ||
* dimension generating function | * dimension generating function | ||
− | + | :<math> | |
\sum_{k=0}^{\infty}\dim M_k x^k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots | \sum_{k=0}^{\infty}\dim M_k x^k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots | ||
− | + | </math> | |
==theta functions== | ==theta functions== | ||
===notation=== | ===notation=== | ||
− | * | + | * <math>\Lambda\subset \mathbb{R}^n</math> : integral lattice, i.e. a free abelian group with a positive definite symmetric bilinear form, i.e. <math>x\cdot y\in \mathbb{Z}</math> for all <math>x,y\in \Lambda</math> |
− | * we will assume that | + | * we will assume that <math>\Lambda</math> is even, i.e., <math>x\cdot x\in 2\mathbb{Z}</math> |
− | * for a basis of | + | * for a basis of <math>\Lambda</math>, fix <math>M</math>, <math>n\times n</math> matrix whose each row is a basis element |
− | * | + | * <math>A:=M^tM</math>, Gram matrix of <math>\Lambda</math> |
===definition=== | ===definition=== | ||
− | * old problem in number theory : find the number of representations of a given integer by the quadratic form associated to | + | * old problem in number theory : find the number of representations of a given integer by the quadratic form associated to <math>\Lambda</math> |
− | * for a given integer | + | * for a given integer <math>N</math>, determine the size of the set <math>\{x\in\Lambda|x\cdot x=2N\}</math> or <math>\{\zeta\in \mathbb{Z}^n|\zeta A \zeta^{t} =2N\}</math> |
− | * denote it by | + | * denote it by <math>a(N)</math> |
− | * theta function of | + | * theta function of <math>\Lambda</math> is a holomorphic function on <math>\mathbb{H}</math> given by |
− | + | :<math> | |
\Theta_\Lambda(\tau)=\sum_{x\in\Lambda}q^{\frac{x\cdot x}{2}}=\sum_{N=0}^\infty a(N)q^{N}, | \Theta_\Lambda(\tau)=\sum_{x\in\Lambda}q^{\frac{x\cdot x}{2}}=\sum_{N=0}^\infty a(N)q^{N}, | ||
− | + | </math> | |
− | where | + | where <math>q=e^{2\pi i \tau}</math> |
==on theta functions of positive definite even unimodular lattices== | ==on theta functions of positive definite even unimodular lattices== | ||
===8차원=== | ===8차원=== | ||
− | * | + | * <math>\dim M_4=1</math> and thus |
− | + | :<math>\theta_{E_8}(\tau)=E_4(\tau)=1+240 q+2160 q^2+6720 q^3+17520 q^4+30240 q^5+\cdots</math> | |
===16차원=== | ===16차원=== | ||
− | * | + | * <math>\dim M_8=1</math>, <math>E_8=E_4^2</math> and |
− | + | :<math> | |
\theta_{E_8\oplus E_8}(\tau)=\theta_{D_{16}^{+}}(\tau)=E_8(\tau)\\ | \theta_{E_8\oplus E_8}(\tau)=\theta_{D_{16}^{+}}(\tau)=E_8(\tau)\\ | ||
E_8(\tau)=1+480 q+61920 q^2+1050240 q^3+7926240 q^4+\cdots | E_8(\tau)=1+480 q+61920 q^2+1050240 q^3+7926240 q^4+\cdots | ||
− | + | </math> | |
===24차원=== | ===24차원=== | ||
* {{수학노트|url=24차원_짝수_자기쌍대_격자}}의 세타함수 | * {{수학노트|url=24차원_짝수_자기쌍대_격자}}의 세타함수 | ||
* modular form of weight 12 | * modular form of weight 12 | ||
− | * | + | * <math>M_{12}=\mathbb{C}\langle E_4^3,E_6^2\rangle</math> |
− | * let | + | * let <math>{\rm gen}(L)</math> be the set of all isomorphim classes of 24-dimensional positive definite even unimodular lattices |
− | * to compute | + | * to compute <math>\theta_{\Lambda}</math>, find <math>a,b</math> such that <math>\theta_{\Lambda}=a E_4^3+ bE_6^2</math> |
− | * we can easily determine | + | * we can easily determine <math>a,b</math> once we know the number <math>r</math> of roots in <math>\Lambda</math> (the coefficient of <math>q</math> in <math>\theta_{\Lambda}</math>) by solving |
− | + | :<math> \left\{ \begin{array}{c} a+b=1 \\ 720 a - 1008 b=r \end{array} \right. </math> | |
* weighted average | * weighted average | ||
− | + | :<math>\left(\sum_{\Lambda\in {\rm gen}(L)}\frac{\Theta_{\Lambda}(\tau)}{|{\rm Aut}(\Lambda)|}\right)\,\cdot\, | |
− | \left(\sum_{\Lambda\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(\Lambda)|}\right)^{-1}=? | + | \left(\sum_{\Lambda\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(\Lambda)|}\right)^{-1}=?</math> |
* we get | * we get | ||
− | + | :<math>\left( \sum_{\Lambda\in {\rm gen}(L)}\frac{\Theta_{\Lambda}(\tau)}{|{\rm Aut}(\Lambda)|}\right)\,\cdot\, | |
− | \left(\sum_{\Lambda\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(\Lambda)|}\right)^{-1}=E_{12}(\tau) | + | \left(\sum_{\Lambda\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(\Lambda)|}\right)^{-1}=E_{12}(\tau)</math> |
− | where | + | where <math>E_{12}</math> is the Eisenstein series |
− | + | :<math> | |
E_{12}(\tau)=1+\frac{65520 q}{691}+\frac{134250480 q^2}{691}+\frac{11606736960 q^3}{691}+\frac{274945048560 q^4}{691}+\frac{3199218815520 q^5}{691}+\cdots | E_{12}(\tau)=1+\frac{65520 q}{691}+\frac{134250480 q^2}{691}+\frac{11606736960 q^3}{691}+\frac{274945048560 q^4}{691}+\frac{3199218815520 q^5}{691}+\cdots | ||
− | + | </math> | |
==Siegel theta series== | ==Siegel theta series== | ||
* {{수학노트|url=격자의_지겔_세타_급수}} | * {{수학노트|url=격자의_지겔_세타_급수}} | ||
− | * for | + | * for <math>g\in \mathbb{N}</math> and <math>\Lambda</math> of rank <math>n</math>, we will define the Siegel theta series <math>\Theta_\Lambda^{(g)}</math> of degree (or genus) <math>g</math> (<math>g</math> comes from the genus of Riemann surfaces) |
− | * | + | * <math>g=1</math> case recovers <math>\Theta_\Lambda^{(1)}=\Theta_\Lambda</math> |
;def (half-integral matrix) | ;def (half-integral matrix) | ||
− | A symmetric matrix | + | A symmetric matrix <math>N\in \operatorname{GL}(g,\mathbb{Q})</math> is called half-integral if <math>2N</math> has integral entries with even integers on the diagonal |
===representations of a quadratic form by another quadratic form=== | ===representations of a quadratic form by another quadratic form=== | ||
− | * | + | * we want to find the number of representations of a quadratic form by the quadratic form of <math>\Lambda</math> |
− | * | + | * let <math>g\leq n</math> |
− | * | + | * <math>\underline{x}</math> : <math>g\times n</math> matrix whose row is an element of <math>\Lambda</math> |
− | + | * for each half-integral <math>g\times g</math> matrix <math>\underline{N}=(N_{ij})</math>, let <math>a(\underline{N})</math> be the number of elements in <math>\{\underline{x}=(x_i)\in\Lambda^{g}| x_i\cdot x_j=2N_{ij}\}</math> | |
− | * for each half-integral | + | * a given <math>\underline{x}</math> can be written as <math>\underline{x}=\underline{\zeta}M</math> for some <math>\underline{\zeta}</math>, a <math>g\times n</math> integer matrix |
− | + | * <math>a(\underline{N})</math> is the number of elements in <math>\{\underline{\zeta}\in\mathbb{Z}^{g,n}|\underline{\zeta} A \underline{\zeta}^t =2\underline{N}\}</math> | |
− | \underline{\ | ||
− | |||
− | |||
− | * | ||
− | |||
===definition=== | ===definition=== | ||
− | * Let | + | * Let <math>\tau=(\tau_{ij})</math> be a symmetric <math>g\times g</math> matrix |
− | * for | + | * for <math>\Lambda</math>, the theta series <math>\Theta_\Lambda^{(g)}</math> of genus <math>g</math> is defined by |
− | + | :<math> | |
\begin{align} | \begin{align} | ||
\Theta_\Lambda^{(g)}(\tau)&=\sum_{\underline{x}\in\Lambda^{g}}e^{\pi i\operatorname{Tr}(\underline{x}\cdot \underline{x} \tau)}\\ | \Theta_\Lambda^{(g)}(\tau)&=\sum_{\underline{x}\in\Lambda^{g}}e^{\pi i\operatorname{Tr}(\underline{x}\cdot \underline{x} \tau)}\\ | ||
122번째 줄: | 117번째 줄: | ||
&=\sum_{\underline{N}:\text{h.i.}} a(\underline{N})e^{2\pi i\operatorname{Tr}(\underline{N}\tau)} | &=\sum_{\underline{N}:\text{h.i.}} a(\underline{N})e^{2\pi i\operatorname{Tr}(\underline{N}\tau)} | ||
\end{align} \label{tg} | \end{align} \label{tg} | ||
− | + | </math> | |
===note on trace=== | ===note on trace=== | ||
* in the last equality, we used the following property of trace | * in the last equality, we used the following property of trace | ||
− | * for two | + | * for two <math>n\times n</math> matrices <math>A=(a_{ij})</math> and <math>B=(b_{ij})</math>, |
− | + | :<math> | |
\operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ji} | \operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ji} | ||
− | + | </math> | |
− | * if | + | * if <math>A</math> and <math>B</math> are symmetric, |
− | + | :<math> | |
\operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ij} | \operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ij} | ||
− | + | </math> | |
− | * the series \ref{tg} converges absolutely if | + | * the series \ref{tg} converges absolutely if <math>\tau</math> is an element of |
− | + | :<math> | |
\mathcal{H}_g:=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\} | \mathcal{H}_g:=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\} | ||
− | + | </math> | |
− | * it is a holomorphic function on | + | * it is a holomorphic function on <math>\mathcal{H}_g</math> |
==Siegel theta functions of even unimodular lattices== | ==Siegel theta functions of even unimodular lattices== | ||
===8차원=== | ===8차원=== | ||
− | * | + | * <math>g=2</math> case |
− | * Fourier coefficient of | + | * Fourier coefficient of <math>\Theta_{E_8}^{(2)}</math> |
− | * | + | * <math>N = \Bigl( {a \atop b/2} \thinspace {b/2 \atop c} \Bigr) \in |
− | + | \operatorname{Mat}_{2\times 2}({1 \over 2}\Z)</math>, positive semi-definite, half-integral matrix | |
− | * for | + | * for <math>\tau=\left( |
\begin{array}{cc} | \begin{array}{cc} | ||
\tau _1 & z \\ | \tau _1 & z \\ | ||
z & \tau _2 | z & \tau _2 | ||
\end{array} | \end{array} | ||
− | \right) | + | \right)</math>, |
− | + | :<math> | |
\operatorname{Tr}(N\tau)=a \tau _1+b z+c \tau _2 | \operatorname{Tr}(N\tau)=a \tau _1+b z+c \tau _2 | ||
− | + | </math> | |
− | * by setting | + | * by setting <math>q_i=e^{2\pi i \tau_i}</math>, <math>\zeta=e^{2\pi i z}</math>, we get |
− | + | :<math>\exp(2\pi i \operatorname{Tr}(N\tau))=q_1^a\zeta^bq_2^c</math> | |
− | * let us compute | + | * let us compute <math>a(N)</math> for <math>N= |
\left( | \left( | ||
\begin{array}{cc} | \begin{array}{cc} | ||
173번째 줄: | 168번째 줄: | ||
0 & 1 | 0 & 1 | ||
\end{array} | \end{array} | ||
− | \right) | + | \right)</math>. |
− | * for the third one, we may use the following | + | * for the third one, we may use the following property of the <math>E_8</math> root system <math>\Phi</math> |
− | + | # for a given <math>v\in \Phi</math>, there exist 126 elements in <math>\Phi</math> orthogonal to <math>v</math> | |
− | # for a given | + | # 240*126=30240 |
* table | * table | ||
− | + | :<math> | |
\begin{array}{c|c|c|c|c|c|c|c|c|c|c} | \begin{array}{c|c|c|c|c|c|c|c|c|c|c} | ||
N & \left( | N & \left( | ||
236번째 줄: | 231번째 줄: | ||
\exp(2\pi i \operatorname{Tr}(N\tau)) & 1 & q_1 & q_2 & q_1^2 & q_2^2 & \frac{q_1 q_2}{\zeta^2} & \frac{q_1 q_2}{\zeta} & q_1 q_2 & q_1 q_2 \zeta & q_1 q_2 \zeta^2 | \exp(2\pi i \operatorname{Tr}(N\tau)) & 1 & q_1 & q_2 & q_1^2 & q_2^2 & \frac{q_1 q_2}{\zeta^2} & \frac{q_1 q_2}{\zeta} & q_1 q_2 & q_1 q_2 \zeta & q_1 q_2 \zeta^2 | ||
\end{array} | \end{array} | ||
− | + | </math> | |
===16차원=== | ===16차원=== | ||
− | * | + | * <math>E_8\oplus E_8</math> and <math>D_{16}^{+}</math> lattice |
− | * for | + | * for <math>g=1,2,3</math>, <math>\Theta_{E_8\oplus E_8}^{(g)}=\Theta_{D_{16}^{+}}^{(g)}</math> |
− | * | + | * <math>\Theta^{(4)}_{E_8\oplus E_8}\neq \Theta^{(4)}_{D_{16}^{+}}</math> |
− | * | + | * <math>\Theta^{(4)}_{E_8\oplus E_8}-\Theta^{(4)}_{D_{16}^{+}}</math>, Siegel cusp form of weight 8 called the Schottky form |
===24차원=== | ===24차원=== | ||
− | * for 24 Niemeier lattices, the associated theta series are linearly dependent in degree | + | * for 24 Niemeier lattices, the associated theta series are linearly dependent in degree <math>\leq</math> 11 and linearly independent in degree 12 (Borcherds-Freitag-Weissauer, 1998) |
;thm | ;thm | ||
− | For a positive definite even unimodular lattice | + | For a positive definite even unimodular lattice <math>\Lambda</math>, <math>\theta^{(g)}_{\Lambda}</math> is a Siegel modular form of weight <math>\frac{n}{2}</math> w.r.t. <math>\Gamma_g</math> |
==symplectic group== | ==symplectic group== | ||
− | * symplectic group | + | * symplectic group <math>\Gamma_g:=\operatorname{Sp}(2g,\Z)=\{M\in \operatorname{GL}(2g,\mathbb{Z})|M^T J_{g} M = J_{g}\}</math> |
where | where | ||
− | + | :<math> | |
J_{g} =\begin{pmatrix}0 & I_g \\-I_g & 0 \\\end{pmatrix} | J_{g} =\begin{pmatrix}0 & I_g \\-I_g & 0 \\\end{pmatrix} | ||
− | + | </math> | |
− | * | + | * <math>2g\times 2g</math> matrix |
* one can check that for | * one can check that for | ||
− | + | :<math>M=\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g,</math> | |
− | + | :<math> | |
\begin{align} | \begin{align} | ||
A^tC=C^tA \\ | A^tC=C^tA \\ | ||
265번째 줄: | 260번째 줄: | ||
A^tD-C^tB= I_g | A^tD-C^tB= I_g | ||
\end{align} | \end{align} | ||
− | + | </math> | |
− | * the lattice | + | * the lattice <math>\mathbb{Z}^{2g}</math> of rank <math>2g</math> with basis <math>a_1,\cdots, a_g,b_1\cdots,b_g</math> with the symplectic form |
− | + | :<math> | |
\langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases} | \langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases} | ||
− | + | </math> | |
− | * then | + | * then <math>\Gamma_g=\operatorname{Aut}(\mathbb{Z}^{2g},\langle,\rangle)</math> |
* note that | * note that | ||
− | + | :<math> | |
\begin{pmatrix} I_g & S \\ 0& I_g \\\end{pmatrix} \in \Gamma_g | \begin{pmatrix} I_g & S \\ 0& I_g \\\end{pmatrix} \in \Gamma_g | ||
− | + | </math> | |
− | for any symmetric integral matrix | + | for any symmetric integral matrix <math>S</math> |
==Siegel upper-half space== | ==Siegel upper-half space== | ||
− | * | + | * <math>\mathcal{H}_g</math> |
− | + | :<math> | |
\mathcal{H}_g=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\} | \mathcal{H}_g=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\} | ||
− | + | </math> | |
− | * there is an action of | + | * there is an action of <math>\Gamma_g</math> on <math>\mathcal{H}_g</math> by |
− | + | :<math> | |
− | \tau\mapsto (A\tau +B)(C\tau + D)^{-1} | + | \tau\mapsto \gamma(\tau)=(A\tau +B)(C\tau + D)^{-1} |
− | + | </math> | |
− | + | * we need to check that <math>C\tau + D</math> Is invertible and <math>\Im{\gamma(\tau)}>0 </math> | |
===Riemann bilinear relation=== | ===Riemann bilinear relation=== | ||
* {{수학노트|url=리만_곡면의_주기_행렬과_겹선형_관계_(bilinear_relation)}} | * {{수학노트|url=리만_곡면의_주기_행렬과_겹선형_관계_(bilinear_relation)}} | ||
− | * | + | * <math>X</math> : compact Riemann surface of genus <math>g</math> |
* there exists a basis <math>a_1, \dots, a_g,b_1,\cdots,b_g</math> of <math>H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g}</math> with the intersection pairing (canonical homology basis) | * there exists a basis <math>a_1, \dots, a_g,b_1,\cdots,b_g</math> of <math>H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g}</math> with the intersection pairing (canonical homology basis) | ||
− | + | :<math> | |
\langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases} | \langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases} | ||
− | + | </math> | |
− | * there exists a basis of the space of holomorphic 1-form, | + | * there exists a basis of the space of holomorphic 1-form, <math>\omega_1,\cdots,\omega_{g}</math> such that |
− | + | :<math> | |
\int_{a_i}\omega_j=\delta_{ij} | \int_{a_i}\omega_j=\delta_{ij} | ||
− | + | </math> | |
− | * if we set | + | * if we set <math>\tau_{i,j}=\int_{b_i}\omega_j</math>, then <math>\tau=(\tau_{i,j})_{1\leq i,j\leq g}</math> satisfies the following properties |
− | # | + | # <math>\tau^{\mathrm{T}}=\tau</math> |
− | # | + | # <math>\textrm{Im}(\tau)</math> is positive definite |
* this is called the Riemann bilinear relation | * this is called the Riemann bilinear relation | ||
− | * | + | * <math>\tau\in \mathcal{H}_g</math> and and it is called a period matrix of <math>X</math> |
− | * | + | * <math>\mathcal{A}_g=\mathcal{H}_g/\Gamma_g</math> : moduli space of principally polarized abelian varieties |
==Siegel modular forms== | ==Siegel modular forms== | ||
* {{수학노트|url=지겔_모듈라_형식}} | * {{수학노트|url=지겔_모듈라_형식}} | ||
;definition | ;definition | ||
− | A holomorphic function | + | A holomorphic function <math>f:\mathcal{H}_g\to \mathbb{C}</math> is a Siegel modular form of weight k and genus(or degree) <math>g</math> if |
− | + | :<math> | |
f \left( (A\tau +B)(C\tau + D)^{-1}\right) = \det(C\tau +D)^{k} f(\tau),\, \forall \begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g | f \left( (A\tau +B)(C\tau + D)^{-1}\right) = \det(C\tau +D)^{k} f(\tau),\, \forall \begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g | ||
− | + | </math> | |
− | and it must be holomorphic at the cusp if | + | and it must be holomorphic at the cusp if <math>g=1</math> |
− | * denote the vector space of such functions as | + | * denote the vector space of such functions as <math>M_k(\Gamma_g)</math> |
===Fourier expansion=== | ===Fourier expansion=== | ||
* note that | * note that | ||
− | + | :<math> | |
\begin{pmatrix} I_g & S \\ 0& I_g \\\end{pmatrix}\cdot \tau = \tau+S | \begin{pmatrix} I_g & S \\ 0& I_g \\\end{pmatrix}\cdot \tau = \tau+S | ||
− | + | </math> | |
− | * | + | * <math>f\in M_k(\Gamma_g)</math> satisfies <math>f(\tau+S)=f(\tau)</math> for any symmetric integral <math>S</math> |
* we get the following expansion | * we get the following expansion | ||
− | + | :<math> | |
− | f(q_{11},\cdots, q_{gg})=\sum_{n_{11},\cdots, n_{gg}\in \mathbb{Z}}a(n_{11},\cdots, n_{gg})q_{11}^{n_{11}}\cdots q_{gg}^{n_{gg}} \label{fou1} | + | f(q_{11},\cdots, q_{gg})=\sum_{n_{11},\cdots, n_{ij},\cdots, n_{gg}\in \mathbb{Z}}a(n_{11},\cdots, n_{gg})q_{11}^{n_{11}}\cdots q_{gg}^{n_{gg}} \label{fou1} |
− | + | </math> | |
− | where | + | where <math>q_{ij}=e^{2\pi i \tau_{ij}}</math>, <math>i\leq j</math> |
− | * define a symmetric matrix | + | * define a symmetric matrix <math>N=(N_{ij})_{1\leq i,j\leq g}</math> as |
− | + | :<math> | |
N_{ij}= | N_{ij}= | ||
\begin{cases} | \begin{cases} | ||
− | n_{ii}, & \text{if | + | n_{ii}, & \text{if </math>i=j<math>}\\ |
− | n_{ij}/2, & \text{if | + | n_{ij}/2, & \text{if </math>i\neq j<math>} |
\end{cases} | \end{cases} | ||
− | + | </math> | |
− | * | + | * <math>\operatorname{Tr}(N\tau)=\sum_{i=1}^{g}N_{ii}\tau_{ii}+2\sum_{1\leq i<j\leq g}N_{ij}\tau_{ij}</math> |
− | * | + | * <math>\exp(2\pi i \operatorname{Tr}(N\tau))=q_{11}^{n_{11}}\cdots q_{gg}^{n_{gg}}</math> |
* \ref{fou1} can be rewritten as | * \ref{fou1} can be rewritten as | ||
− | + | :<math>f(\tau)=\sum_{N}a(N)\exp\left(2\pi i \operatorname{Tr}(N\tau)\right)</math> | |
− | where the summation is over | + | where the summation is over <math>N=(N_{ij})\in \operatorname{Mat}_g(\frac{1}{2}\mathbb{Z})</math> half-integral matrix |
;Koecher Principle | ;Koecher Principle | ||
− | For a Siegel modular form | + | For a Siegel modular form <math>f\in M_k(\Gamma_g)</math>, if <math>N</math> is not a positive semi-definite matrix, then <math>a(N)=0</math>. (this is why holomorphicity at the cusp is not necessary if <math>g>1</math>) |
==지겔 모듈라 형식의 예== | ==지겔 모듈라 형식의 예== | ||
* [[격자의 지겔 세타 급수]] | * [[격자의 지겔 세타 급수]] | ||
* {{수학노트|url=지겔-아이젠슈타인_급수}} | * {{수학노트|url=지겔-아이젠슈타인_급수}} | ||
− | + | :<math> | |
E_{k}^{(g)}(\tau) = \sum_{(C,D)} \frac{1}{\det(C\tau +D)^{k}} | E_{k}^{(g)}(\tau) = \sum_{(C,D)} \frac{1}{\det(C\tau +D)^{k}} | ||
− | + | </math> | |
where the summation is over all | where the summation is over all | ||
− | + | :<math> | |
\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_{g,0}\backslash \Gamma_{g} | \begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_{g,0}\backslash \Gamma_{g} | ||
− | + | </math> | |
and | and | ||
− | + | :<math> | |
\Gamma_{g,0}=\{\begin{pmatrix}A & B \\ 0 & D \\\end{pmatrix}\in \Gamma_{g}\} | \Gamma_{g,0}=\{\begin{pmatrix}A & B \\ 0 & D \\\end{pmatrix}\in \Gamma_{g}\} | ||
− | + | </math> | |
− | (the summation extends over all classes of coprime symmetric pairs, i. e. over all inequivalent bottom rows of elements of | + | (the summation extends over all classes of coprime symmetric pairs, i. e. over all inequivalent bottom rows of elements of <math>\Gamma_g</math> with respect to left multiplications by unimodular integer matrices of degree <math>g</math>. In other words, the sum is over a full set of representatives for the cosets <math>\operatorname{GL}(g,\mathbb{Z})\backslash \Gamma_{g}</math>) |
+ | * [[Fourier coefficients of Siegel-Eisenstein series]] | ||
==Siegel-Weil formula== | ==Siegel-Weil formula== | ||
363번째 줄: | 359번째 줄: | ||
* {{수학노트|url=지겔-베유_공식}} | * {{수학노트|url=지겔-베유_공식}} | ||
;thm | ;thm | ||
− | For a positive definite even unimodular lattice | + | For a positive definite even unimodular lattice <math>L</math>, |
− | + | :<math>\left( \sum_{M\in {\rm gen}(L)}\frac{\Theta_M^{(g)}(Z)}{|{\rm Aut}(M)|}\right)\,\cdot\, | |
\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}= | \left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}= | ||
− | E^{(g)}_{k}(Z), | + | E^{(g)}_{k}(Z),</math> |
− | Moreover, the Fourier coefficients | + | Moreover, the Fourier coefficients <math>a_{E}(N)</math> of <math>E</math> can be expressed as an infinite product of [[Local density of quadratic form|local densities]] |
− | + | :<math> | |
a_{E}(N)=\prod_{p:\text{primes}}\beta_{L,p}(N) \label{lp} | a_{E}(N)=\prod_{p:\text{primes}}\beta_{L,p}(N) \label{lp} | ||
− | + | </math> | |
− | ===mass | + | ===mass formula=== |
− | * for a half-integral | + | * for a half-integral <math>N</math>, |
− | + | :<math> | |
a_{E}(N)=\left( \sum_{M\in {\rm gen}(L)}\frac{r_M(N)}{|{\rm Aut}(M)|}\right)\,\cdot\, | a_{E}(N)=\left( \sum_{M\in {\rm gen}(L)}\frac{r_M(N)}{|{\rm Aut}(M)|}\right)\,\cdot\, | ||
\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} | \left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} | ||
− | + | </math> | |
− | where | + | where <math>\Theta_M^{(g)}(Z)=\sum_{N}r_M(N)\exp\left(2\pi i \operatorname{Tr}(N\tau)\right)</math> |
− | * if | + | * if <math>2N</math> is a Gram matrix of <math>L</math>, then we obtain |
− | + | :<math> | |
a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} | a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} | ||
− | + | </math> | |
as | as | ||
− | + | :<math> | |
r_M(N) = \begin{cases} |\operatorname{Aut}(L)|, & \text{if }L\sim M \\ 0, & \text{if }L\nsim M \\ \end{cases} | r_M(N) = \begin{cases} |\operatorname{Aut}(L)|, & \text{if }L\sim M \\ 0, & \text{if }L\nsim M \\ \end{cases} | ||
− | + | </math> | |
* then we can express | * then we can express | ||
− | + | :<math> | |
a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} | a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} | ||
− | + | </math> | |
in terms of local densities \ref{lp}, which gives the Smith-Minkowski-Siegel mass formula | in terms of local densities \ref{lp}, which gives the Smith-Minkowski-Siegel mass formula | ||
[[분류:talks and lecture notes]] | [[분류:talks and lecture notes]] | ||
+ | [[분류:theta]] | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 03:18 기준 최신판
overview
- Siegel theta series
- Siegel modular forms
- Siegel-Weil formula
modular forms
- \(\mathbb{H}=\{\tau\in \mathbb{C}|\Im \tau>0\}\)
- modular group \(\Gamma=SL(2, \mathbb Z) = \left \{ \left. \left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\right| a, b, c, d \in \mathbb Z,\ ad-bc = 1 \right \}\)
- \(\operatorname{PSL}(2,\mathbb{Z})=\operatorname{SL}(2,\mathbb{Z})/\{\pm I\}\) acts on \(\mathbb{H}\) by
\[\tau\mapsto\frac{a\tau+b}{c\tau+d}\] for \(\left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\in \operatorname{SL}(2,\mathbb{Z})\)
- def
A holomorphic function \(f:\mathbb{H}\to \mathbb{C}\) is a modular form of weight \(k\) (w.r.t. \(SL(2, \mathbb Z)\)) if
- \(f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{k} f(\tau)\)
- \(f\) is "holomorphic at the cusp", i.e. it has a Fourier expansion of the following form
\[ f(\tau)=\sum_{n=0}^{\infty}a(n)e^{2\pi i n \tau} \]
Eisenstein series
- for an integer \(k\geq 2\), define the Eisenstein series by
\[ E_{2k}(\tau) : =\frac{1}{2}\sum_{ \substack{ (c,d)\in \mathbb{Z}^2\\ (c,d)=1 }} \frac{1}{(c\tau+d )^{2k}} \]
- Fourier expansion
\[E_{2k}(\tau):= 1+\frac {2}{\zeta(1-2k)}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)=1-\frac {4k}{B_{2k}}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)\] where \(\zeta\) denotes the Riemann zeta function, \(B_k\) Bernoulli number and \(\sigma_r(n)=\sum_{d|n}d^r\)
- this is a modular form of weight \(2k\)
- for example
\[E_4(\tau)= 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n}=1 + 240 q + 2160 q^2 + \cdots \] \[E_6(\tau)=1- 504\sum_{n=1}^\infty \sigma_5(n) q^{n}=1 - 504 q - 16632 q^2 - \cdots \]
the space of modular forms
- thm
Let \(M_k\) be the space of modular forms of weight \(k\) and \(M:=\bigoplus_{k\in \mathbb{Z}_{\geq 0}} M_k\). We have \[M=\mathbb{C}[E_4,E_6]\]
- dimension generating function
\[ \sum_{k=0}^{\infty}\dim M_k x^k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots \]
theta functions
notation
- \(\Lambda\subset \mathbb{R}^n\) : integral lattice, i.e. a free abelian group with a positive definite symmetric bilinear form, i.e. \(x\cdot y\in \mathbb{Z}\) for all \(x,y\in \Lambda\)
- we will assume that \(\Lambda\) is even, i.e., \(x\cdot x\in 2\mathbb{Z}\)
- for a basis of \(\Lambda\), fix \(M\), \(n\times n\) matrix whose each row is a basis element
- \(A:=M^tM\), Gram matrix of \(\Lambda\)
definition
- old problem in number theory : find the number of representations of a given integer by the quadratic form associated to \(\Lambda\)
- for a given integer \(N\), determine the size of the set \(\{x\in\Lambda|x\cdot x=2N\}\) or \(\{\zeta\in \mathbb{Z}^n|\zeta A \zeta^{t} =2N\}\)
- denote it by \(a(N)\)
- theta function of \(\Lambda\) is a holomorphic function on \(\mathbb{H}\) given by
\[ \Theta_\Lambda(\tau)=\sum_{x\in\Lambda}q^{\frac{x\cdot x}{2}}=\sum_{N=0}^\infty a(N)q^{N}, \] where \(q=e^{2\pi i \tau}\)
on theta functions of positive definite even unimodular lattices
8차원
- \(\dim M_4=1\) and thus
\[\theta_{E_8}(\tau)=E_4(\tau)=1+240 q+2160 q^2+6720 q^3+17520 q^4+30240 q^5+\cdots\]
16차원
- \(\dim M_8=1\), \(E_8=E_4^2\) and
\[ \theta_{E_8\oplus E_8}(\tau)=\theta_{D_{16}^{+}}(\tau)=E_8(\tau)\\ E_8(\tau)=1+480 q+61920 q^2+1050240 q^3+7926240 q^4+\cdots \]
24차원
- 틀:수학노트의 세타함수
- modular form of weight 12
- \(M_{12}=\mathbb{C}\langle E_4^3,E_6^2\rangle\)
- let \({\rm gen}(L)\) be the set of all isomorphim classes of 24-dimensional positive definite even unimodular lattices
- to compute \(\theta_{\Lambda}\), find \(a,b\) such that \(\theta_{\Lambda}=a E_4^3+ bE_6^2\)
- we can easily determine \(a,b\) once we know the number \(r\) of roots in \(\Lambda\) (the coefficient of \(q\) in \(\theta_{\Lambda}\)) by solving
\[ \left\{ \begin{array}{c} a+b=1 \\ 720 a - 1008 b=r \end{array} \right. \]
- weighted average
\[\left(\sum_{\Lambda\in {\rm gen}(L)}\frac{\Theta_{\Lambda}(\tau)}{|{\rm Aut}(\Lambda)|}\right)\,\cdot\, \left(\sum_{\Lambda\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(\Lambda)|}\right)^{-1}=?\]
- we get
\[\left( \sum_{\Lambda\in {\rm gen}(L)}\frac{\Theta_{\Lambda}(\tau)}{|{\rm Aut}(\Lambda)|}\right)\,\cdot\, \left(\sum_{\Lambda\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(\Lambda)|}\right)^{-1}=E_{12}(\tau)\] where \(E_{12}\) is the Eisenstein series \[ E_{12}(\tau)=1+\frac{65520 q}{691}+\frac{134250480 q^2}{691}+\frac{11606736960 q^3}{691}+\frac{274945048560 q^4}{691}+\frac{3199218815520 q^5}{691}+\cdots \]
Siegel theta series
- 틀:수학노트
- for \(g\in \mathbb{N}\) and \(\Lambda\) of rank \(n\), we will define the Siegel theta series \(\Theta_\Lambda^{(g)}\) of degree (or genus) \(g\) (\(g\) comes from the genus of Riemann surfaces)
- \(g=1\) case recovers \(\Theta_\Lambda^{(1)}=\Theta_\Lambda\)
- def (half-integral matrix)
A symmetric matrix \(N\in \operatorname{GL}(g,\mathbb{Q})\) is called half-integral if \(2N\) has integral entries with even integers on the diagonal
representations of a quadratic form by another quadratic form
- we want to find the number of representations of a quadratic form by the quadratic form of \(\Lambda\)
- let \(g\leq n\)
- \(\underline{x}\) \[g\times n\] matrix whose row is an element of \(\Lambda\)
- for each half-integral \(g\times g\) matrix \(\underline{N}=(N_{ij})\), let \(a(\underline{N})\) be the number of elements in \(\{\underline{x}=(x_i)\in\Lambda^{g}| x_i\cdot x_j=2N_{ij}\}\)
- a given \(\underline{x}\) can be written as \(\underline{x}=\underline{\zeta}M\) for some \(\underline{\zeta}\), a \(g\times n\) integer matrix
- \(a(\underline{N})\) is the number of elements in \(\{\underline{\zeta}\in\mathbb{Z}^{g,n}|\underline{\zeta} A \underline{\zeta}^t =2\underline{N}\}\)
definition
- Let \(\tau=(\tau_{ij})\) be a symmetric \(g\times g\) matrix
- for \(\Lambda\), the theta series \(\Theta_\Lambda^{(g)}\) of genus \(g\) is defined by
\[ \begin{align} \Theta_\Lambda^{(g)}(\tau)&=\sum_{\underline{x}\in\Lambda^{g}}e^{\pi i\operatorname{Tr}(\underline{x}\cdot \underline{x} \tau)}\\ &=\sum_{\underline{\zeta}\in\mathbb{Z}^{g,n}}e^{\pi i\operatorname{Tr}(\underline{\zeta} A \underline{\zeta}^{t}\tau)}\\ &=\sum_{\underline{N}:\text{h.i.}} a(\underline{N})e^{2\pi i\operatorname{Tr}(\underline{N}\tau)} \end{align} \label{tg} \]
note on trace
- in the last equality, we used the following property of trace
- for two \(n\times n\) matrices \(A=(a_{ij})\) and \(B=(b_{ij})\),
\[ \operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ji} \]
- if \(A\) and \(B\) are symmetric,
\[ \operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ij} \]
- the series \ref{tg} converges absolutely if \(\tau\) is an element of
\[ \mathcal{H}_g:=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\} \]
- it is a holomorphic function on \(\mathcal{H}_g\)
Siegel theta functions of even unimodular lattices
8차원
- \(g=2\) case
- Fourier coefficient of \(\Theta_{E_8}^{(2)}\)
- \(N = \Bigl( {a \atop b/2} \thinspace {b/2 \atop c} \Bigr) \in \operatorname{Mat}_{2\times 2}({1 \over 2}\Z)\), positive semi-definite, half-integral matrix
- for \(\tau=\left( \begin{array}{cc} \tau _1 & z \\ z & \tau _2 \end{array} \right)\),
\[ \operatorname{Tr}(N\tau)=a \tau _1+b z+c \tau _2 \]
- by setting \(q_i=e^{2\pi i \tau_i}\), \(\zeta=e^{2\pi i z}\), we get
\[\exp(2\pi i \operatorname{Tr}(N\tau))=q_1^a\zeta^bq_2^c\]
- let us compute \(a(N)\) for \(N= \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)\).
- for the third one, we may use the following property of the \(E_8\) root system \(\Phi\)
- for a given \(v\in \Phi\), there exist 126 elements in \(\Phi\) orthogonal to \(v\)
- 240*126=30240
- table
\[ \begin{array}{c|c|c|c|c|c|c|c|c|c|c} N & \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) & \left( \begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right) & \left( \begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) \\ \hline a(N) & 1 & 240 & 240 & 2160 & 2160 & 240 & 13440 & 30240 & 13440 & 240 \\ \hline \exp(2\pi i \operatorname{Tr}(N\tau)) & 1 & q_1 & q_2 & q_1^2 & q_2^2 & \frac{q_1 q_2}{\zeta^2} & \frac{q_1 q_2}{\zeta} & q_1 q_2 & q_1 q_2 \zeta & q_1 q_2 \zeta^2 \end{array} \]
16차원
- \(E_8\oplus E_8\) and \(D_{16}^{+}\) lattice
- for \(g=1,2,3\), \(\Theta_{E_8\oplus E_8}^{(g)}=\Theta_{D_{16}^{+}}^{(g)}\)
- \(\Theta^{(4)}_{E_8\oplus E_8}\neq \Theta^{(4)}_{D_{16}^{+}}\)
- \(\Theta^{(4)}_{E_8\oplus E_8}-\Theta^{(4)}_{D_{16}^{+}}\), Siegel cusp form of weight 8 called the Schottky form
24차원
- for 24 Niemeier lattices, the associated theta series are linearly dependent in degree \(\leq\) 11 and linearly independent in degree 12 (Borcherds-Freitag-Weissauer, 1998)
- thm
For a positive definite even unimodular lattice \(\Lambda\), \(\theta^{(g)}_{\Lambda}\) is a Siegel modular form of weight \(\frac{n}{2}\) w.r.t. \(\Gamma_g\)
symplectic group
- symplectic group \(\Gamma_g:=\operatorname{Sp}(2g,\Z)=\{M\in \operatorname{GL}(2g,\mathbb{Z})|M^T J_{g} M = J_{g}\}\)
where \[ J_{g} =\begin{pmatrix}0 & I_g \\-I_g & 0 \\\end{pmatrix} \]
- \(2g\times 2g\) matrix
- one can check that for
\[M=\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g,\] \[ \begin{align} A^tC=C^tA \\ B^tD=D^tB \\ A^tD-C^tB= I_g \end{align} \]
- the lattice \(\mathbb{Z}^{2g}\) of rank \(2g\) with basis \(a_1,\cdots, a_g,b_1\cdots,b_g\) with the symplectic form
\[ \langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases} \]
- then \(\Gamma_g=\operatorname{Aut}(\mathbb{Z}^{2g},\langle,\rangle)\)
- note that
\[ \begin{pmatrix} I_g & S \\ 0& I_g \\\end{pmatrix} \in \Gamma_g \] for any symmetric integral matrix \(S\)
Siegel upper-half space
- \(\mathcal{H}_g\)
\[ \mathcal{H}_g=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\} \]
- there is an action of \(\Gamma_g\) on \(\mathcal{H}_g\) by
\[ \tau\mapsto \gamma(\tau)=(A\tau +B)(C\tau + D)^{-1} \]
- we need to check that \(C\tau + D\) Is invertible and \(\Im{\gamma(\tau)}>0 \)
Riemann bilinear relation
- 틀:수학노트
- \(X\) : compact Riemann surface of genus \(g\)
- there exists a basis \(a_1, \dots, a_g,b_1,\cdots,b_g\) of \(H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g}\) with the intersection pairing (canonical homology basis)
\[ \langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases} \]
- there exists a basis of the space of holomorphic 1-form, \(\omega_1,\cdots,\omega_{g}\) such that
\[ \int_{a_i}\omega_j=\delta_{ij} \]
- if we set \(\tau_{i,j}=\int_{b_i}\omega_j\), then \(\tau=(\tau_{i,j})_{1\leq i,j\leq g}\) satisfies the following properties
- \(\tau^{\mathrm{T}}=\tau\)
- \(\textrm{Im}(\tau)\) is positive definite
- this is called the Riemann bilinear relation
- \(\tau\in \mathcal{H}_g\) and and it is called a period matrix of \(X\)
- \(\mathcal{A}_g=\mathcal{H}_g/\Gamma_g\) : moduli space of principally polarized abelian varieties
Siegel modular forms
- definition
A holomorphic function \(f:\mathcal{H}_g\to \mathbb{C}\) is a Siegel modular form of weight k and genus(or degree) \(g\) if \[ f \left( (A\tau +B)(C\tau + D)^{-1}\right) = \det(C\tau +D)^{k} f(\tau),\, \forall \begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g \] and it must be holomorphic at the cusp if \(g=1\)
- denote the vector space of such functions as \(M_k(\Gamma_g)\)
Fourier expansion
- note that
\[ \begin{pmatrix} I_g & S \\ 0& I_g \\\end{pmatrix}\cdot \tau = \tau+S \]
- \(f\in M_k(\Gamma_g)\) satisfies \(f(\tau+S)=f(\tau)\) for any symmetric integral \(S\)
- we get the following expansion
\[ f(q_{11},\cdots, q_{gg})=\sum_{n_{11},\cdots, n_{ij},\cdots, n_{gg}\in \mathbb{Z}}a(n_{11},\cdots, n_{gg})q_{11}^{n_{11}}\cdots q_{gg}^{n_{gg}} \label{fou1} \] where \(q_{ij}=e^{2\pi i \tau_{ij}}\), \(i\leq j\)
- define a symmetric matrix \(N=(N_{ij})_{1\leq i,j\leq g}\) as
\[ N_{ij}= \begin{cases} n_{ii}, & \text{if \]i=j\(}\\ n_{ij}/2, & \text{if \)i\neq j\(} \end{cases} \)
- \(\operatorname{Tr}(N\tau)=\sum_{i=1}^{g}N_{ii}\tau_{ii}+2\sum_{1\leq i<j\leq g}N_{ij}\tau_{ij}\)
- \(\exp(2\pi i \operatorname{Tr}(N\tau))=q_{11}^{n_{11}}\cdots q_{gg}^{n_{gg}}\)
- \ref{fou1} can be rewritten as
\[f(\tau)=\sum_{N}a(N)\exp\left(2\pi i \operatorname{Tr}(N\tau)\right)\] where the summation is over \(N=(N_{ij})\in \operatorname{Mat}_g(\frac{1}{2}\mathbb{Z})\) half-integral matrix
- Koecher Principle
For a Siegel modular form \(f\in M_k(\Gamma_g)\), if \(N\) is not a positive semi-definite matrix, then \(a(N)=0\). (this is why holomorphicity at the cusp is not necessary if \(g>1\))
지겔 모듈라 형식의 예
\[ E_{k}^{(g)}(\tau) = \sum_{(C,D)} \frac{1}{\det(C\tau +D)^{k}} \] where the summation is over all \[ \begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_{g,0}\backslash \Gamma_{g} \] and \[ \Gamma_{g,0}=\{\begin{pmatrix}A & B \\ 0 & D \\\end{pmatrix}\in \Gamma_{g}\} \] (the summation extends over all classes of coprime symmetric pairs, i. e. over all inequivalent bottom rows of elements of \(\Gamma_g\) with respect to left multiplications by unimodular integer matrices of degree \(g\). In other words, the sum is over a full set of representatives for the cosets \(\operatorname{GL}(g,\mathbb{Z})\backslash \Gamma_{g}\))
Siegel-Weil formula
- thm
For a positive definite even unimodular lattice \(L\), \[\left( \sum_{M\in {\rm gen}(L)}\frac{\Theta_M^{(g)}(Z)}{|{\rm Aut}(M)|}\right)\,\cdot\, \left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}= E^{(g)}_{k}(Z),\]
Moreover, the Fourier coefficients \(a_{E}(N)\) of \(E\) can be expressed as an infinite product of local densities \[ a_{E}(N)=\prod_{p:\text{primes}}\beta_{L,p}(N) \label{lp} \]
mass formula
- for a half-integral \(N\),
\[ a_{E}(N)=\left( \sum_{M\in {\rm gen}(L)}\frac{r_M(N)}{|{\rm Aut}(M)|}\right)\,\cdot\, \left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} \] where \(\Theta_M^{(g)}(Z)=\sum_{N}r_M(N)\exp\left(2\pi i \operatorname{Tr}(N\tau)\right)\)
- if \(2N\) is a Gram matrix of \(L\), then we obtain
\[ a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} \] as \[ r_M(N) = \begin{cases} |\operatorname{Aut}(L)|, & \text{if }L\sim M \\ 0, & \text{if }L\nsim M \\ \end{cases} \]
- then we can express
\[ a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} \] in terms of local densities \ref{lp}, which gives the Smith-Minkowski-Siegel mass formula