"Cyclotomic numbers and Chebyshev polynomials"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 cyclotomic numbers and Chebyshev polynomials로 바꾸었습니다.)
 
(사용자 3명의 중간 판 31개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==introduction==
  
 +
* borrowed from [[Andrews-Gordon identity]]
 +
*  quantum dimension and thier recurrence relation
 +
:<math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}</math> satisfies
 +
:<math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math>
 +
 +
 +
 +
==diagonals of regular polygon==
 +
* length of hepagon
 +
:<math>d_i = \frac{\sin (\pi  (i+1)/7)}{\sin (\pi/7)} </math>
 +
 +
 +
 +
==chebyshev polynomials==
 +
 +
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
 +
* http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity
 +
 +
 +
 +
 +
 +
==related items==
 +
 +
* [[sl(2) - orthogonal polynomials and Lie theory]]
 +
 +
 +
 +
 +
 +
==articles==
 +
 +
* [http://www.jstor.org/stable/2691048 Golden Fields: A Case for the Heptagon]
 +
** Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31
 +
 +
[[분류:개인노트]]
 +
[[Category:quantum dimensions]]

2020년 12월 28일 (월) 05:01 기준 최신판

introduction

\[d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\] satisfies \[d_i^2=1+d_{i-1}d_{i+1}\] where \(d_0=1\), \(d_k=1\)


diagonals of regular polygon

  • length of hepagon

\[d_i = \frac{\sin (\pi (i+1)/7)}{\sin (\pi/7)} \]


chebyshev polynomials



related items



articles