"Differential Galois theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 11개는 보이지 않습니다)
2번째 줄: 2번째 줄:
  
 
* differential galois theory
 
* differential galois theory
* Liouville 
+
* Liouville
 
* [[2008년 12월~09년 1월 한국 방문|2008년 12월]] 9일 MCF 'differential Galois theory'
 
* [[2008년 12월~09년 1월 한국 방문|2008년 12월]] 9일 MCF 'differential Galois theory'
  
 
+
  
 
+
  
 
==historical origin==
 
==historical origin==
  
 
* integration in finite terms
 
* integration in finite terms
* quadrature of second order differential equation (Fuchsian differential equation)
+
* quadrature of second order differential equation (Fuchsian differential equation)
  
 
+
  
 
+
  
 
==solution by quadrature==
 
==solution by quadrature==
  
* [http://pythagoras0.springnote.com/pages/4913609 일계 선형미분방정식]<br><math>\frac{dy}{dx}+a(x)y=b(x)</math><br><math>y(x)e^{\int a(x)\,dx}=\int b(x)e^{\int a(x)\,dx} \,dx+C</math><br>
+
* [http://pythagoras0.springnote.com/pages/4913609 일계 선형미분방정식]<math>\frac{dy}{dx}+a(x)y=b(x)</math><math>y(x)e^{\int a(x)\,dx}=\int b(x)e^{\int a(x)\,dx} \,dx+C</math>
* <math>y''-2xy'=0</math><br><math>y=\int e^{x^2}\, dx</math><br>
+
* <math>y''-2xy'=0</math><math>y=\int e^{x^2}\, dx</math>
 
* note that the integral of an exponential naturally shows up in expression solutions
 
* note that the integral of an exponential naturally shows up in expression solutions
  
 
+
  
 
+
  
 
==differential field==
 
==differential field==
  
*  a pair <math>(F,\partial)</math> such that<br>
+
*  a pair <math>(F,\partial)</math> such that
 
** <math>\partial(a+b)=\partial a+\partial b</math>
 
** <math>\partial(a+b)=\partial a+\partial b</math>
 
** <math>\partial(ab)=(\partial a)b+a(\partial b)</math>
 
** <math>\partial(ab)=(\partial a)b+a(\partial b)</math>
 
* <math>C_F=\ker \partial</math>
 
* <math>C_F=\ker \partial</math>
  
 
+
  
 
+
  
 
==solvable by quadratures==
 
==solvable by quadratures==
  
 
* basic functions : basic elementary functions
 
* basic functions : basic elementary functions
* allowed operatrions : compositions, arithmetic operations, differentiation, integration
+
* allowed operatrions : compositions, arithmetic operations, differentiation, integration
*  examples<br>
+
*  examples
 
** an elliptic integral is representable by quadrature
 
** an elliptic integral is representable by quadrature
  
 
+
  
 
+
  
 
==elementary extension==
 
==elementary extension==
54번째 줄: 54번째 줄:
 
* it is allowed to take exponentials and logarithms to make a field extension
 
* it is allowed to take exponentials and logarithms to make a field extension
 
* elementary element
 
* elementary element
*  difference between Liouville extension<br>
+
*  difference between Liouville extension
 
** exponential+ integral <=> differentiation + exponential of integral
 
** exponential+ integral <=> differentiation + exponential of integral
 
** in elementary extension, we are not allowed to get an integrated element
 
** in elementary extension, we are not allowed to get an integrated element
  
 
+
  
 
+
  
 
==Liouville extension==
 
==Liouville extension==
  
* an element is said to be representable by a generalized quadrature
+
* an element is said to be representable by a generalized quadrature
 
* we can capture these properties using the concept of Liouville extension
 
* we can capture these properties using the concept of Liouville extension
*  to get a Liouville extension, we can adjoin<br>
+
*  to get a Liouville extension, we can adjoin
 
** integrals
 
** integrals
 
** exponentials of integrals
 
** exponentials of integrals
**  algebraic extension (generalized Liouville extension)<br>
+
**  algebraic extension (generalized Liouville extension)
***  from these we can include the following operations<br>
+
***  from these we can include the following operations
 
**** exponential
 
**** exponential
 
**** logarithm
 
**** logarithm
*  For<math>K_{i}=K_{i-1}(e_i)</math> , one of the following condition holds<br>
+
*  For<math>K_{i}=K_{i-1}(e_i)</math> , one of the following condition holds
** <math>e_i'\in K_{i-1}</math>, i.e. <math>e_i=\int e_i'\in K_i</math><br>
+
** <math>e_i'\in K_{i-1}</math>, i.e. <math>e_i=\int e_i'\in K_i</math>
** <math>e_{i}'/e_{i}\in K_{i-1}</math> i.e. <math>(\log e_i)' \in K_{i-1}</math><br>
+
** <math>e_{i}'/e_{i}\in K_{i-1}</math> i.e. <math>(\log e_i)' \in K_{i-1}</math>
** <math>e_{i}</math> is algebraic over <math>K_{i-1}</math><br>
+
** <math>e_{i}</math> is algebraic over <math>K_{i-1}</math>
*  remark on exponentiation<br>
+
*  remark on exponentiation
**  Let <math>a,a'\in F</math>. Is <math>b=e^a\in K</math> where K is a Liouville extension?<br>
+
**  Let <math>a,a'\in F</math>. Is <math>b=e^a\in K</math> where K is a Liouville extension?
** <math>b'=a' e^a=a'b</math> implies <math>a'=\frac{b'}{b}\in F</math>.<br>
+
** <math>b'=a' e^a=a'b</math> implies <math>a'=\frac{b'}{b}\in F</math>.
**  the exponential of the integral of a' i.e. <math>e^{\int a'}=e^a+c</math> must be in the Liouville extension. So <math>b=e^a\in K</math>.<br>
+
**  the exponential of the integral of a' i.e. <math>e^{\int a'}=e^a+c</math> must be in the Liouville extension. So <math>b=e^a\in K</math>.
*  remark on logarithm<br>
+
*  remark on logarithm
** <math>b=\log a</math> is the integral of <math>a'/a\in F</math>. So <math>b\in K</math><br>
+
** <math>b=\log a</math> is the integral of <math>a'/a\in F</math>. So <math>b\in K</math>
  
*  a few result<br>
+
*  a few result
**  K/F is a Liouville extension iff the differential Galois group K over F is solvable.<br>
+
**  K/F is a Liouville extension iff the differential Galois group K over F is solvable.
**  K/F is a generalized Liouville extension iff the differential Galois group K over F has the solvable component of the identity<br>
+
**  K/F is a generalized Liouville extension iff the differential Galois group K over F has the solvable component of the identity
  
 
+
  
 
+
  
 
==Picard-Vessiot extension==
 
==Picard-Vessiot extension==
  
 
* framework for linear differential equation
 
* framework for linear differential equation
* field extension is made by including solutions of DE to the base field (e.g. rational function field)
+
* field extension is made by including solutions of DE to the base field (e.g. rational function field)
*  consider monic differential equations over a differential field F<br><math>\mathcal{L}[Y]=Y^{(n)}+a_{n-1}Y^{(n-1)}+\cdots+a_{1}Y^{(1)}+a_0</math>, <math>a_i\in F</math><br>
+
*  consider monic differential equations over a differential field F<math>\mathcal{L}[Y]=Y^{(n)}+a_{n-1}Y^{(n-1)}+\cdots+a_{1}Y^{(1)}+a_0</math>, <math>a_i\in F</math>
* <math>(E,\partial_E)\supseteq (F,\partial_F)</math> is a Picard-Vessiot extension for <math>\mathcal{L}</math> if<br>
+
* <math>(E,\partial_E)\supseteq (F,\partial_F)</math> is a Picard-Vessiot extension for <math>\mathcal{L}</math> if
 
** E/F is generated by n linear independent solution to <math>\mathcal{L}</math>, i.e. adjoining basis of <math>V=\mathcal{L}^{-1}(0)</math> to F
 
** E/F is generated by n linear independent solution to <math>\mathcal{L}</math>, i.e. adjoining basis of <math>V=\mathcal{L}^{-1}(0)</math> to F
 
** <math>C_E=C_F</math>, <math>\partial_E\mid_F=\partial_F</math>
 
** <math>C_E=C_F</math>, <math>\partial_E\mid_F=\partial_F</math>
 
* this corresponds to the concept of the splitting fields(or Galois extensions)
 
* this corresponds to the concept of the splitting fields(or Galois extensions)
*  examples<br>
+
*  examples
 
** algebraic extension
 
** algebraic extension
 
** adjoining an integral
 
** adjoining an integral
 
** adjoining the exponential of an integral
 
** adjoining the exponential of an integral
*  we can define a Galois group for a linear differential equation<br><math>\operatorname{Gal}(E/F)=\{\sigma\in\operatorname{Aut}E|\partial(\sigma(n))=\sigma(\partial a), \sigma\mid _F=\operatorname{id} \}</math><br>
+
*  we can define a Galois group for a linear differential equation<math>\operatorname{Gal}(E/F)=\{\sigma\in\operatorname{Aut}E|\partial(\sigma(n))=\sigma(\partial a), \sigma\mid _F=\operatorname{id} \}</math>
 
** the action of an element of the Galois group is determined by its action on a basis of V
 
** the action of an element of the Galois group is determined by its action on a basis of V
  
112번째 줄: 112번째 줄:
 
If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.
 
If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.
  
 
+
  
 
+
  
 
==Fuchsian differential equation==
 
==Fuchsian differential equation==
  
* differential equation with regular singularities
+
* differential equation with regular singularities
*  indicial equation<br><math>x(x-1)+px+q=0</math><br>
+
*  indicial equation<math>x(x-1)+px+q=0</math>
  
 
theorem
 
theorem
  
A Fuchsian linear differential equation is solvable by quadratures if and only if the monodromy group of this equation is solvable.
+
A Fuchsian linear differential equation is solvable by quadratures if and only if the monodromy group of this equation is solvable.
  
 
+
  
 
+
  
 
+
  
 
==solution by quadrature==
 
==solution by quadrature==
139번째 줄: 139번째 줄:
 
* [http://www.math.purdue.edu/%7Eagabriel/topological_galois.pdf http://www.math.purdue.edu/~agabriel/topological_galois.pdf]
 
* [http://www.math.purdue.edu/%7Eagabriel/topological_galois.pdf http://www.math.purdue.edu/~agabriel/topological_galois.pdf]
  
 
+
  
 
+
  
 
==related items==
 
==related items==
  
* [[Class Field Theory]]<br>
+
* [[Class Field Theory]]
* [[number fields and threefolds]]<br>
+
* [[number fields and threefolds]]
 
* {{수학노트|url=푸크스_미분방정식(Fuchsian_differential_equation)}}
 
* {{수학노트|url=푸크스_미분방정식(Fuchsian_differential_equation)}}
  
 
+
  
 
+
  
 
+
  
 
==encyclopedia==
 
==encyclopedia==
163번째 줄: 163번째 줄:
 
* http://en.wikipedia.org/wiki/Field_extension
 
* http://en.wikipedia.org/wiki/Field_extension
  
 
+
  
 
+
  
 
==expositions==
 
==expositions==
173번째 줄: 173번째 줄:
  
 
==articles==
 
==articles==
 +
* Sanchez, Omar Leon, and Joel Nagloo. “On Parameterized Differential Galois Extensions.” arXiv:1507.06338 [math], July 22, 2015. http://arxiv.org/abs/1507.06338.
 +
* Maurischat, Andreas. “A Categorical Approach to Picard-Vessiot Theory.” arXiv:1507.04166 [math], July 15, 2015. http://arxiv.org/abs/1507.04166.
 +
* Hardouin, Charlotte, and Alexey Ovchinnikov. ‘Calculating Galois Groups of Differential Equations with Parameters’. arXiv:1505.07068 [math], 26 May 2015. http://arxiv.org/abs/1505.07068.
 +
* Blázquez-Sanz, David, Juan José Morales-Ruiz, and Jacques-Arthur Weil. ‘Differential Galois Theory and Lie Symmetries’. arXiv:1503.09023 [math], 31 March 2015. http://arxiv.org/abs/1503.09023.
 
* Mitschi, Claude. “Some Applications of the Parameterized Picard-Vessiot Theory.” arXiv:1503.01361 [math], March 4, 2015. http://arxiv.org/abs/1503.01361.
 
* Mitschi, Claude. “Some Applications of the Parameterized Picard-Vessiot Theory.” arXiv:1503.01361 [math], March 4, 2015. http://arxiv.org/abs/1503.01361.
 
* Crespo, Teresa, Zbigniew Hajto, and Elzbieta Sowa-Adamus. ‘Galois Correspondence Theorem for Picard-Vessiot Extensions’. arXiv:1502.08026 [math], 27 February 2015. http://arxiv.org/abs/1502.08026.
 
* Crespo, Teresa, Zbigniew Hajto, and Elzbieta Sowa-Adamus. ‘Galois Correspondence Theorem for Picard-Vessiot Extensions’. arXiv:1502.08026 [math], 27 February 2015. http://arxiv.org/abs/1502.08026.
179번째 줄: 183번째 줄:
 
==books==
 
==books==
  
*  Group Theory and Differential Equations<br>
+
*  Group Theory and Differential Equations
 
** Lawrence Markus, 1960
 
** Lawrence Markus, 1960
*  An introduction to differential algebra<br>
+
*  An introduction to differential algebra
**  Irving Kaplansky<br>
+
**  Irving Kaplansky
*  algebraic theory of differential equations<br>
+
*  algebraic theory of differential equations
 
* http://gigapedia.info/1/galois_theory
 
* http://gigapedia.info/1/galois_theory
 
* http://gigapedia.info/1/differential+galois+theory
 
* http://gigapedia.info/1/differential+galois+theory
191번째 줄: 195번째 줄:
 
* http://gigapedia.info/1/differntial+algebra
 
* http://gigapedia.info/1/differntial+algebra
 
[[분류:개인노트]]
 
[[분류:개인노트]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math]]
 
[[분류:math]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2383624 Q2383624]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'differential'}, {'LOWER': 'galois'}, {'LEMMA': 'theory'}]

2021년 2월 17일 (수) 02:11 기준 최신판

introduction

  • differential galois theory
  • Liouville
  • 2008년 12월 9일 MCF 'differential Galois theory'



historical origin

  • integration in finite terms
  • quadrature of second order differential equation (Fuchsian differential equation)



solution by quadrature

  • 일계 선형미분방정식\(\frac{dy}{dx}+a(x)y=b(x)\)\(y(x)e^{\int a(x)\,dx}=\int b(x)e^{\int a(x)\,dx} \,dx+C\)
  • \(y''-2xy'=0\)\(y=\int e^{x^2}\, dx\)
  • note that the integral of an exponential naturally shows up in expression solutions



differential field

  • a pair \((F,\partial)\) such that
    • \(\partial(a+b)=\partial a+\partial b\)
    • \(\partial(ab)=(\partial a)b+a(\partial b)\)
  • \(C_F=\ker \partial\)



solvable by quadratures

  • basic functions : basic elementary functions
  • allowed operatrions : compositions, arithmetic operations, differentiation, integration
  • examples
    • an elliptic integral is representable by quadrature



elementary extension

  • it is allowed to take exponentials and logarithms to make a field extension
  • elementary element
  • difference between Liouville extension
    • exponential+ integral <=> differentiation + exponential of integral
    • in elementary extension, we are not allowed to get an integrated element



Liouville extension

  • an element is said to be representable by a generalized quadrature
  • we can capture these properties using the concept of Liouville extension
  • to get a Liouville extension, we can adjoin
    • integrals
    • exponentials of integrals
    • algebraic extension (generalized Liouville extension)
      • from these we can include the following operations
        • exponential
        • logarithm
  • For\(K_{i}=K_{i-1}(e_i)\) , one of the following condition holds
    • \(e_i'\in K_{i-1}\), i.e. \(e_i=\int e_i'\in K_i\)
    • \(e_{i}'/e_{i}\in K_{i-1}\) i.e. \((\log e_i)' \in K_{i-1}\)
    • \(e_{i}\) is algebraic over \(K_{i-1}\)
  • remark on exponentiation
    • Let \(a,a'\in F\). Is \(b=e^a\in K\) where K is a Liouville extension?
    • \(b'=a' e^a=a'b\) implies \(a'=\frac{b'}{b}\in F\).
    • the exponential of the integral of a' i.e. \(e^{\int a'}=e^a+c\) must be in the Liouville extension. So \(b=e^a\in K\).
  • remark on logarithm
    • \(b=\log a\) is the integral of \(a'/a\in F\). So \(b\in K\)
  • a few result
    • K/F is a Liouville extension iff the differential Galois group K over F is solvable.
    • K/F is a generalized Liouville extension iff the differential Galois group K over F has the solvable component of the identity



Picard-Vessiot extension

  • framework for linear differential equation
  • field extension is made by including solutions of DE to the base field (e.g. rational function field)
  • consider monic differential equations over a differential field F\(\mathcal{L}[Y]=Y^{(n)}+a_{n-1}Y^{(n-1)}+\cdots+a_{1}Y^{(1)}+a_0\), \(a_i\in F\)
  • \((E,\partial_E)\supseteq (F,\partial_F)\) is a Picard-Vessiot extension for \(\mathcal{L}\) if
    • E/F is generated by n linear independent solution to \(\mathcal{L}\), i.e. adjoining basis of \(V=\mathcal{L}^{-1}(0)\) to F
    • \(C_E=C_F\), \(\partial_E\mid_F=\partial_F\)
  • this corresponds to the concept of the splitting fields(or Galois extensions)
  • examples
    • algebraic extension
    • adjoining an integral
    • adjoining the exponential of an integral
  • we can define a Galois group for a linear differential equation\(\operatorname{Gal}(E/F)=\{\sigma\in\operatorname{Aut}E|\partial(\sigma(n))=\sigma(\partial a), \sigma\mid _F=\operatorname{id} \}\)
    • the action of an element of the Galois group is determined by its action on a basis of V

theorem

If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.



Fuchsian differential equation

  • differential equation with regular singularities
  • indicial equation\(x(x-1)+px+q=0\)

theorem

A Fuchsian linear differential equation is solvable by quadratures if and only if the monodromy group of this equation is solvable.




solution by quadrature



related items




encyclopedia



expositions

  • Singer, M. F., and J. H. Davenport. ‘Elementary and Liouvillian Solutions of Linear Differential Equations’. In EUROCAL ’85, edited by Bob F. Caviness, 595–96. Lecture Notes in Computer Science 204. Springer Berlin Heidelberg, 1985. http://link.springer.com/chapter/10.1007/3-540-15984-3_335.


articles

  • Sanchez, Omar Leon, and Joel Nagloo. “On Parameterized Differential Galois Extensions.” arXiv:1507.06338 [math], July 22, 2015. http://arxiv.org/abs/1507.06338.
  • Maurischat, Andreas. “A Categorical Approach to Picard-Vessiot Theory.” arXiv:1507.04166 [math], July 15, 2015. http://arxiv.org/abs/1507.04166.
  • Hardouin, Charlotte, and Alexey Ovchinnikov. ‘Calculating Galois Groups of Differential Equations with Parameters’. arXiv:1505.07068 [math], 26 May 2015. http://arxiv.org/abs/1505.07068.
  • Blázquez-Sanz, David, Juan José Morales-Ruiz, and Jacques-Arthur Weil. ‘Differential Galois Theory and Lie Symmetries’. arXiv:1503.09023 [math], 31 March 2015. http://arxiv.org/abs/1503.09023.
  • Mitschi, Claude. “Some Applications of the Parameterized Picard-Vessiot Theory.” arXiv:1503.01361 [math], March 4, 2015. http://arxiv.org/abs/1503.01361.
  • Crespo, Teresa, Zbigniew Hajto, and Elzbieta Sowa-Adamus. ‘Galois Correspondence Theorem for Picard-Vessiot Extensions’. arXiv:1502.08026 [math], 27 February 2015. http://arxiv.org/abs/1502.08026.
  • Singer, Michael F. ‘Liouvillian First Integrals of Differential Equations’. Transactions of the American Mathematical Society 333, no. 2 (1 October 1992): 673–88. doi:10.2307/2154053.

books

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'differential'}, {'LOWER': 'galois'}, {'LEMMA': 'theory'}]