"Hubbard model"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 5개는 보이지 않습니다)
44번째 줄: 44번째 줄:
 
==related items==
 
==related items==
 
* [[Bethe ansatz]]
 
* [[Bethe ansatz]]
 
+
* [[Bose-Hubbard Model]]
 
  
 
==encyclopedia==
 
==encyclopedia==
59번째 줄: 58번째 줄:
  
 
==articles==
 
==articles==
 +
* de Leeuw, Marius, and Vidas Regelskis. “An Algebraic Approach to the Hubbard Model.” arXiv:1509.06205 [cond-Mat, Physics:hep-Th, Physics:math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06205.
 
* Popkov, Vladislav, and Tomaz Prosen. “Infinitely Dimensional Lax Structure for One-Dimensional Hubbard Model.” arXiv:1501.02230 [cond-Mat, Physics:math-Ph, Physics:nlin], January 9, 2015. http://arxiv.org/abs/1501.02230.
 
* Popkov, Vladislav, and Tomaz Prosen. “Infinitely Dimensional Lax Structure for One-Dimensional Hubbard Model.” arXiv:1501.02230 [cond-Mat, Physics:math-Ph, Physics:nlin], January 9, 2015. http://arxiv.org/abs/1501.02230.
 
* Wadati, Miki, Eugenio Olmedilla, and Yasuhiro Akutsu. “Lax Pair for the One-Dimensional Hubbard Model.” Journal of the Physical Society of Japan 56, no. 4 (April 15, 1987): 1340–47. doi:[http://dx.doi.org/10.1143/JPSJ.56.1340 10.1143/JPSJ.56.1340].
 
* Wadati, Miki, Eugenio Olmedilla, and Yasuhiro Akutsu. “Lax Pair for the One-Dimensional Hubbard Model.” Journal of the Physical Society of Japan 56, no. 4 (April 15, 1987): 1340–47. doi:[http://dx.doi.org/10.1143/JPSJ.56.1340 10.1143/JPSJ.56.1340].
64번째 줄: 64번째 줄:
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
[[분류:math and physics]]
+
[[분류:migrate]]
 +
 
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1571298 Q1571298]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'hubbard'}, {'LEMMA': 'model'}]

2021년 2월 17일 (수) 02:07 기준 최신판

introduction

  • The Hubbard model describes hopping electrons on a lattice
  • 1968 Lieb and Wu
    • application of Bethe ansatz
  • 1972 Takahasi
    • string hypothesis
    • replace the Lieb-Wu equations by simpler ones
    • proceeded to drive a set of non-linear integral equations known as thermodynamic Bethe ansatz equations
  • algebraic Bethe ansatz for the Hubbard model



Lieb-Wu equations

  • describing Eigenstates of the Hubbard Hamiltonian
  • Bethe ansatz equation

\[\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u},\,j=1,\cdots, N\] \[\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u},\,l=1,\cdots, M\]




string hypothesis

history



related items

encyclopedia


books


articles

  • de Leeuw, Marius, and Vidas Regelskis. “An Algebraic Approach to the Hubbard Model.” arXiv:1509.06205 [cond-Mat, Physics:hep-Th, Physics:math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06205.
  • Popkov, Vladislav, and Tomaz Prosen. “Infinitely Dimensional Lax Structure for One-Dimensional Hubbard Model.” arXiv:1501.02230 [cond-Mat, Physics:math-Ph, Physics:nlin], January 9, 2015. http://arxiv.org/abs/1501.02230.
  • Wadati, Miki, Eugenio Olmedilla, and Yasuhiro Akutsu. “Lax Pair for the One-Dimensional Hubbard Model.” Journal of the Physical Society of Japan 56, no. 4 (April 15, 1987): 1340–47. doi:10.1143/JPSJ.56.1340.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'hubbard'}, {'LEMMA': 'model'}]