"GKZ hypergeometric functions"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(다른 사용자 한 명의 중간 판 4개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, called the GKZ hypergeometric system. | ||
+ | |||
+ | |||
==expositions== | ==expositions== | ||
* EDUARDO CATTANI, [https://www.math.umass.edu/~cattani/hypergeom_lectures.pdf Three Lectures on Hypergeometric Functions] | * EDUARDO CATTANI, [https://www.math.umass.edu/~cattani/hypergeom_lectures.pdf Three Lectures on Hypergeometric Functions] | ||
4번째 줄: | 8번째 줄: | ||
+ | ==articles== | ||
+ | * Lei Fu, <math>\ell</math>-adic GKZ hypergeometric sheaf and exponential sums, arXiv:1208.1373 [math.AG], August 07 2012, http://arxiv.org/abs/1208.1373 | ||
+ | * Artamonov, D. V. ‘The Stokes Phenomenon for an Irregular Gelfand-Kapranov-Zelevinsky System Associated with the Rank One Lattice’. arXiv:1503.06345 [math], 21 March 2015. http://arxiv.org/abs/1503.06345. | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:hypergeometric functions]] | [[분류:hypergeometric functions]] | ||
+ | [[분류:migrate]] |
2020년 11월 16일 (월) 04:27 기준 최신판
introduction
- To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, called the GKZ hypergeometric system.
expositions
- EDUARDO CATTANI, Three Lectures on Hypergeometric Functions
- Stienstra, Jan. 2005. “GKZ Hypergeometric Structures.” arXiv:math/0511351 (November 14). http://arxiv.org/abs/math/0511351.
articles
- Lei Fu, \(\ell\)-adic GKZ hypergeometric sheaf and exponential sums, arXiv:1208.1373 [math.AG], August 07 2012, http://arxiv.org/abs/1208.1373
- Artamonov, D. V. ‘The Stokes Phenomenon for an Irregular Gelfand-Kapranov-Zelevinsky System Associated with the Rank One Lattice’. arXiv:1503.06345 [math], 21 March 2015. http://arxiv.org/abs/1503.06345.