"Pieri rule"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 11개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
+
* special case of [[Littlewood-Richardson rule]]
 +
* expansion of the product of a Schur function with a complete homogeneous symmetric polynomial or an elementary symmetric polynomial
 +
* representation theoretically, it corresponds to a tensor product in which one of the factors is a symmetric or exterior
 +
power of the defining representation
 +
* <math>g</math>-Pieri is related to complete homogeneous symmetric polynomial
 +
* <math>e</math>-Pieri is dual to <math>g</math>-pieri and is related to complete elementary symmetric polynomial
 +
* in more geometric setting, let <math>G</math> be a classical Lie group and <math>P</math> a parabolic subgroup. The Pieri rule is a combinatorial formula describing the multiplication by a special Schubert class in the (quantum) cohomology ring of the homogeneous space <math>X=G/P</math>.
  
 
==Pieri rules for Schur polynomials==
 
==Pieri rules for Schur polynomials==
* $S_{\lambda}$ denotes a Schur polynomial of $k$-variables
+
* <math>S_{\lambda}</math> denotes a Schur polynomial of <math>k</math>-variables
 
+
:<math>
$$
 
 
S_{\lambda}S_{(m,0\cdots, 0)}=\sum_{\nu} S_{\nu}
 
S_{\lambda}S_{(m,0\cdots, 0)}=\sum_{\nu} S_{\nu}
$$
+
</math>
where the sum is over all $\nu$ such that $\nu_1\geq \lambda_1\geq \nu_2 \geq \lambda_2\cdots \geq \nu_k\geq \lambda_k\geq 0$ and $\sum \nu_j=m+\sum \lambda_j$
+
where the sum is over all <math>\nu</math> such that <math>\nu_1\geq \lambda_1\geq \nu_2 \geq \lambda_2\cdots \geq \nu_k\geq \lambda_k\geq 0</math> and <math>\sum \nu_j=m+\sum \lambda_j</math>
  
  
 
===example===
 
===example===
* $S_{(2,1)}S_{(2)}=S_{(4,1)}+S_{(3,2)}+S_{(3,1,1)}+S_{(2,2,1)}$
+
* <math>S_{(2,1)}S_{(2)}=S_{(4,1)}+S_{(3,2)}+S_{(3,1,1)}+S_{(2,2,1)}</math>
 +
 
 +
 
 +
===generating function form===
 +
* recall that <math>S_{(m,0\cdots, 0)}=H_m</math> and
 +
:<math>
 +
\prod_{i\geq 1}^k \frac{1}{1-a x_i } = \sum_{j=0}^{\infty}H_ja^j
 +
</math>
 +
* thus
 +
:<math>
 +
S_{\mu}\prod_{i\geq 1} \frac{1}{1-a x_i}=\sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert} \varphi_{\lambda/\mu}S_{\lambda}
 +
</math>
 +
where <math>\varphi_{\lambda/\mu}=1</math> only when <math>\lambda/\mu</math> is a horizontal strip and zero otherwise
  
 
==Pieri rules for Macdonal polynomials==
 
==Pieri rules for Macdonal polynomials==
* $g$- and $e$-Pieri rules for Macdonald polynomials expressed in generating function form  
+
* <math>g</math>- and <math>e</math>-Pieri rules for Macdonald polynomials expressed in generating function form  
===$g$-Pieri case===
+
===<math>g</math>-Pieri case===
 
\begin{equation}
 
\begin{equation}
 
P_{\mu}(q,t) \prod_{i\geq 1} \frac{(atx_i;q)_{\infty}}{(ax_i;q)_{\infty}}
 
P_{\mu}(q,t) \prod_{i\geq 1} \frac{(atx_i;q)_{\infty}}{(ax_i;q)_{\infty}}
23번째 줄: 40번째 줄:
 
\end{equation}
 
\end{equation}
 
Here the Pieri coefficient
 
Here the Pieri coefficient
$\varphi_{\lambda/\mu}(q,t)=0$ unless $\lambda/\mu$ is a horizontal strip,  
+
<math>\varphi_{\lambda/\mu}(q,t)=0</math> unless <math>\lambda/\mu</math> is a horizontal strip,  
 
in which case
 
in which case
 
\begin{multline}\label{Eq_varphi}
 
\begin{multline}\label{Eq_varphi}
36번째 줄: 53번째 줄:
  
  
===$e$-Pieri case===
+
===<math>e</math>-Pieri case===
Similarly, the $e$-Pieri rule is given by
+
Similarly, the <math>e</math>-Pieri rule is given by
 
\begin{equation}
 
\begin{equation}
 
P_{\mu}(x;q,t)\prod_{i\geq 1} (1+ax_i)=
 
P_{\mu}(x;q,t)\prod_{i\geq 1} (1+ax_i)=
 
\sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert}  
 
\sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert}  
\psi'_{{\lambda}/{\mu}}q,t) P_{\lambda}(x;q,t),
+
\psi'_{{\lambda}/{\mu}}(q,t) P_{\lambda}(x;q,t),
 
\end{equation}
 
\end{equation}
where $\psi'_{{\lambda}/{\mu}}(q,t)$ is zero
+
where <math>\psi'_{{\lambda}/{\mu}}(q,t)</math> is zero
unless $\lambda/\mu$ is a vertical strip, in which case  
+
unless <math>\lambda/\mu</math> is a vertical strip, in which case  
 
\cite[page 336]{Macdonald95}
 
\cite[page 336]{Macdonald95}
 
\begin{equation}\label{Eq_psip}
 
\begin{equation}\label{Eq_psip}
51번째 줄: 68번째 줄:
 
\frac{1-q^{\lambda_i-\lambda_j}t^{j-i+1}}{1-q^{\lambda_i-\lambda_j}t^{j-i}}.
 
\frac{1-q^{\lambda_i-\lambda_j}t^{j-i+1}}{1-q^{\lambda_i-\lambda_j}t^{j-i}}.
 
\end{equation}
 
\end{equation}
The product in the above is over all $i<j$ such that  
+
The product in the above is over all <math>i<j</math> such that  
$\lambda_i=\mu_i$ and $\lambda_j>\mu_j$.
+
<math>\lambda_i=\mu_i</math> and <math>\lambda_j>\mu_j</math>.
An alternative expression for $\psi'_{{\lambda}/{\mu}}(q,t)$ is given by
+
An alternative expression for <math>\psi'_{{\lambda}/{\mu}}(q,t)</math> is given by
 
\cite[page 340]{Macdonald95}
 
\cite[page 340]{Macdonald95}
 
\begin{equation}\label{Eq_psip340}
 
\begin{equation}\label{Eq_psip340}
 
\psi'_{{\lambda}/{\mu}}(q,t)=\prod \frac{b_{\lambda}(s;q,t)}{b_{\mu}(s;q,t)}
 
\psi'_{{\lambda}/{\mu}}(q,t)=\prod \frac{b_{\lambda}(s;q,t)}{b_{\mu}(s;q,t)}
 
\end{equation}
 
\end{equation}
where the product is over all squares $s=(i,j)\in\mu\subseteq\lambda$
+
where the product is over all squares <math>s=(i,j)\in\mu\subseteq\lambda</math>
such that $i<j$, $\mu_i=\lambda_i$ and $\lambda'_j>\mu_j'$.
+
such that <math>i<j</math>, <math>\mu_i=\lambda_i</math> and <math>\lambda'_j>\mu_j'</math>.
 
 
  
 
==related items==
 
==related items==
74번째 줄: 90번째 줄:
  
 
* Soichi Okada, Pieri rules for classical groups and equinumeration between generalized oscillating tableaux and semistandard tableaux, arXiv:1606.02375 [math.CO], June 08 2016, http://arxiv.org/abs/1606.02375
 
* Soichi Okada, Pieri rules for classical groups and equinumeration between generalized oscillating tableaux and semistandard tableaux, arXiv:1606.02375 [math.CO], June 08 2016, http://arxiv.org/abs/1606.02375
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q7191884 Q7191884]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'pieri'}, {'LOWER': "'s"}, {'LEMMA': 'formula'}]

2021년 2월 17일 (수) 02:02 기준 최신판

introduction

  • special case of Littlewood-Richardson rule
  • expansion of the product of a Schur function with a complete homogeneous symmetric polynomial or an elementary symmetric polynomial
  • representation theoretically, it corresponds to a tensor product in which one of the factors is a symmetric or exterior

power of the defining representation

  • \(g\)-Pieri is related to complete homogeneous symmetric polynomial
  • \(e\)-Pieri is dual to \(g\)-pieri and is related to complete elementary symmetric polynomial
  • in more geometric setting, let \(G\) be a classical Lie group and \(P\) a parabolic subgroup. The Pieri rule is a combinatorial formula describing the multiplication by a special Schubert class in the (quantum) cohomology ring of the homogeneous space \(X=G/P\).

Pieri rules for Schur polynomials

  • \(S_{\lambda}\) denotes a Schur polynomial of \(k\)-variables

\[ S_{\lambda}S_{(m,0\cdots, 0)}=\sum_{\nu} S_{\nu} \] where the sum is over all \(\nu\) such that \(\nu_1\geq \lambda_1\geq \nu_2 \geq \lambda_2\cdots \geq \nu_k\geq \lambda_k\geq 0\) and \(\sum \nu_j=m+\sum \lambda_j\)


example

  • \(S_{(2,1)}S_{(2)}=S_{(4,1)}+S_{(3,2)}+S_{(3,1,1)}+S_{(2,2,1)}\)


generating function form

  • recall that \(S_{(m,0\cdots, 0)}=H_m\) and

\[ \prod_{i\geq 1}^k \frac{1}{1-a x_i } = \sum_{j=0}^{\infty}H_ja^j \]

  • thus

\[ S_{\mu}\prod_{i\geq 1} \frac{1}{1-a x_i}=\sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert} \varphi_{\lambda/\mu}S_{\lambda} \] where \(\varphi_{\lambda/\mu}=1\) only when \(\lambda/\mu\) is a horizontal strip and zero otherwise

Pieri rules for Macdonal polynomials

  • \(g\)- and \(e\)-Pieri rules for Macdonald polynomials expressed in generating function form

\(g\)-Pieri case

\begin{equation} P_{\mu}(q,t) \prod_{i\geq 1} \frac{(atx_i;q)_{\infty}}{(ax_i;q)_{\infty}} =\sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert} \varphi_{\lambda/\mu}(q,t) P_{\lambda}(q,t). \end{equation} Here the Pieri coefficient \(\varphi_{\lambda/\mu}(q,t)=0\) unless \(\lambda/\mu\) is a horizontal strip, in which case \begin{multline}\label{Eq_varphi} \varphi_{\lambda/\mu}(q,t)= \prod_{1\leq i\leq j\leq l(\lambda)} \frac{(qt^{j-i};q)_{\lambda_i-\lambda_j}}{(t^{j-i+1};q)_{\lambda_i-\lambda_j}}\cdot \frac{(qt^{j-i};q)_{\mu_i-\mu_{j+1}}}{(t^{j-i+1};q)_{\mu_i-\mu_{j+1}}} \\ \times \frac{(t^{j-i+1};q)_{\lambda_i-\mu_j}}{(qt^{j-i};q)_{\lambda_i-\mu_j}}\cdot \frac{(t^{j-i+1};q)_{\mu_i-\lambda_{j+1}}}{(qt^{j-i};q)_{\mu_i-\lambda_{j+1}}}. \end{multline}


\(e\)-Pieri case

Similarly, the \(e\)-Pieri rule is given by \begin{equation} P_{\mu}(x;q,t)\prod_{i\geq 1} (1+ax_i)= \sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert} \psi'_{{\lambda}/{\mu}}(q,t) P_{\lambda}(x;q,t), \end{equation} where \(\psi'_{{\lambda}/{\mu}}(q,t)\) is zero unless \(\lambda/\mu\) is a vertical strip, in which case \cite[page 336]{Macdonald95} \begin{equation}\label{Eq_psip} \psi'_{{\lambda}/{\mu}}(q,t) = \prod \frac{1-q^{\mu_i-\mu_j}t^{j-i-1}}{1-q^{\mu_i-\mu_j}t^{j-i}}\cdot \frac{1-q^{\lambda_i-\lambda_j}t^{j-i+1}}{1-q^{\lambda_i-\lambda_j}t^{j-i}}. \end{equation} The product in the above is over all \(i<j\) such that \(\lambda_i=\mu_i\) and \(\lambda_j>\mu_j\). An alternative expression for \(\psi'_{{\lambda}/{\mu}}(q,t)\) is given by \cite[page 340]{Macdonald95} \begin{equation}\label{Eq_psip340} \psi'_{{\lambda}/{\mu}}(q,t)=\prod \frac{b_{\lambda}(s;q,t)}{b_{\mu}(s;q,t)} \end{equation} where the product is over all squares \(s=(i,j)\in\mu\subseteq\lambda\) such that \(i<j\), \(\mu_i=\lambda_i\) and \(\lambda'_j>\mu_j'\).

related items


computational resource

articles

  • Soichi Okada, Pieri rules for classical groups and equinumeration between generalized oscillating tableaux and semistandard tableaux, arXiv:1606.02375 [math.CO], June 08 2016, http://arxiv.org/abs/1606.02375

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'pieri'}, {'LOWER': "'s"}, {'LEMMA': 'formula'}]