"Mirror symmetry"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 21개는 보이지 않습니다) | |||
5번째 줄: | 5번째 줄: | ||
* 1994 Kontsevich | * 1994 Kontsevich | ||
* categorical equivalence of the following two categories | * categorical equivalence of the following two categories | ||
− | ** derived category of bounded complexes of coherent sheaves on a smooth, complete, algebraic variety | + | ** derived category of bounded complexes of coherent sheaves on a smooth, complete, algebraic variety <math>X</math> over an algebraically closed field |
− | ** Fukaya category of the symplectic manifold | + | ** Fukaya category of the symplectic manifold <math>\tilde{X}</math> |
+ | |||
+ | |||
+ | ==elliptic curve case== | ||
+ | * According to Kontsevich, the mirror partner of an algebraic manifold <math>M</math> should be a symplectic manifold <math>\tilde{M}</math> such that the derived category <math>D^b(M)</math> of bounded complexes of coherent sheaves on <math>M</math> is equivalent to a suitable version of Fukaya's category <math>F(\tilde{M})</math> of Lagrangian submanifolds of <math>M</math> equipped with a flat bundle. In this paper the authors verify this conjecture in the case when <math>M</math> is an elliptic curve <math>E_{\tau}=\mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z})</math>, where <math>\tau=a+bi, b>0</math>. Here the mirror partner is a torus <math>\tilde{E}=\mathbb{C}/(\mathbb{Z}+\mathbb{Z})</math> with Kähler metric <math>b(dx^2+dy^2)</math>. It is also equipped with a form <math>B=a dx\wedge dy</math>. The authors give a beautiful, very explicit description of the two categories involved in the mirror duality. | ||
==related items== | ==related items== | ||
* [[Calabi-Yau threefolds]] | * [[Calabi-Yau threefolds]] | ||
+ | |||
+ | |||
+ | ==books== | ||
+ | * [http://math.stanford.edu/~vakil/files/mirrorfinal.pdf Mirror Symmetry] | ||
==exposition== | ==exposition== | ||
+ | * http://arxiv.org/abs/1506.07757 | ||
+ | * Port, Andrew. “An Introduction to Homological Mirror Symmetry and the Case of Elliptic Curves.” arXiv:1501.00730 [math], January 4, 2015. http://arxiv.org/abs/1501.00730. | ||
+ | * Quigley, Callum. “Mirror Symmetry in Physics: The Basics.” arXiv:1412.8180 [hep-Th], December 28, 2014. http://arxiv.org/abs/1412.8180. | ||
+ | * Chan, Kwokwai. “SYZ Mirror Symmetry for Toric Varieties.” arXiv:1412.7231 [math-Ph], December 22, 2014. http://arxiv.org/abs/1412.7231. | ||
+ | * Clader, Emily, and Yongbin Ruan. “Mirror Symmetry Constructions.” arXiv:1412.1268 [hep-Th, Physics:math-Ph], December 3, 2014. http://arxiv.org/abs/1412.1268. | ||
+ | * Hosono, Shinobu, and Hiromichi Takagi. “Mirror Symmetry and Projective Geometry of Fourier-Mukai Partners.” arXiv:1410.1254 [math], October 6, 2014. http://arxiv.org/abs/1410.1254. | ||
+ | * Chan, Kwokwai. “The Strominger-Yau-Zaslow Conjecture and Its Impact.” arXiv:1408.6062 [math], August 26, 2014. http://arxiv.org/abs/1408.6062. | ||
+ | * Ueda, Kazushi. “Mirror Symmetry and K3 Surfaces.” arXiv:1407.1566 [math], July 6, 2014. http://arxiv.org/abs/1407.1566. | ||
* http://www.kias.re.kr/file/NewsletterNo37.pdf | * http://www.kias.re.kr/file/NewsletterNo37.pdf | ||
− | * Lectures on Mirror Symmetry, Derived Categories, and D-branes | + | * Lectures on Mirror Symmetry, Derived Categories, and D-branes Authors: Anton Kapustin, Dmitri Orlov http://arxiv.org/abs/math/0308173 |
* Yau, Shing-Tung, ed. 1992. Essays on Mirror Manifolds. Hong Kong: International Press. http://www.ams.org/mathscinet-getitem?mr=1191418. | * Yau, Shing-Tung, ed. 1992. Essays on Mirror Manifolds. Hong Kong: International Press. http://www.ams.org/mathscinet-getitem?mr=1191418. | ||
− | |||
==articles== | ==articles== | ||
+ | * Schaug, Andrew. “Quantum Mirror Symmetry for Borcea-Voisin Threefolds.” arXiv:1510.08333 [math-Ph], October 28, 2015. http://arxiv.org/abs/1510.08333. | ||
+ | * Cao, Yalong, and Naichung Conan Leung. “Remarks on Mirror Symmetry of Donaldson-Thomas Theory for Calabi-Yau 4-Folds.” arXiv:1506.04218 [math-Ph], June 12, 2015. http://arxiv.org/abs/1506.04218. | ||
+ | * Kanazawa, Atsushi, and Siu-Cheong Lau. “Geometric Transitions and SYZ Mirror Symmetry.” arXiv:1503.03829 [math], March 12, 2015. http://arxiv.org/abs/1503.03829. | ||
+ | * Sheridan, Nicholas. “Homological Mirror Symmetry for Calabi-Yau Hypersurfaces in Projective Space.” arXiv:1111.0632 [math], November 2, 2011. http://arxiv.org/abs/1111.0632. | ||
+ | * Hiep, Dang Tuan. “Rational Curves on Calabi-Yau Threefolds: Verifying Mirror Symmetry Predictions.” arXiv:1409.3712 [math], September 12, 2014. http://arxiv.org/abs/1409.3712. | ||
+ | * Polishchuk, Alexander, and Eric Zaslow. 1998. “Categorical Mirror Symmetry: The Elliptic Curve.” Advances in Theoretical and Mathematical Physics 2 (2): 443–470. | ||
+ | * Kontsevich, Maxim. 1995. “Homological Algebra of Mirror Symmetry.” In Proceedings of the International Congress of Mathematicians, Vol.\ 1, 2 (Zürich, 1994), 120–139. Basel: Birkhäuser. http://www.ams.org/mathscinet-getitem?mr=1403918. | ||
* Candelas, Philip, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. 1991. “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.” Nuclear Physics. B 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6. | * Candelas, Philip, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. 1991. “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.” Nuclear Physics. B 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6. | ||
− | + | * Greene, B. R., and M. R. Plesser. 1990. “Duality in Calabi-Yau Moduli Space.” Nuclear Physics. B 338 (1): 15–37. doi:10.1016/0550-3213(90)90622-K. | |
− | + | * Candelas, P., M. Lynker, and R. Schimmrigk. 1990. “Calabi-Yau Manifolds in Weighted <math>\bf P_4</math>.” Nuclear Physics. B 341 (2): 383–402. doi:10.1016/0550-3213(90)90185-G. | |
− | |||
− | * | ||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[분류:physics]] | [[분류:physics]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
+ | [[분류:duality]] | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q5914418 Q5914418] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'mirror'}, {'LEMMA': 'symmetry'}] | ||
+ | * [{'LOWER': 'mirror'}, {'LOWER': 'symmetry'}, {'OP': '*'}, {'LOWER': 'string'}, {'LOWER': 'theory'}, {'LEMMA': ')'}] |
2021년 2월 17일 (수) 01:56 기준 최신판
introduction
homological mirror symmetry
- 1994 Kontsevich
- categorical equivalence of the following two categories
- derived category of bounded complexes of coherent sheaves on a smooth, complete, algebraic variety \(X\) over an algebraically closed field
- Fukaya category of the symplectic manifold \(\tilde{X}\)
elliptic curve case
- According to Kontsevich, the mirror partner of an algebraic manifold \(M\) should be a symplectic manifold \(\tilde{M}\) such that the derived category \(D^b(M)\) of bounded complexes of coherent sheaves on \(M\) is equivalent to a suitable version of Fukaya's category \(F(\tilde{M})\) of Lagrangian submanifolds of \(M\) equipped with a flat bundle. In this paper the authors verify this conjecture in the case when \(M\) is an elliptic curve \(E_{\tau}=\mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z})\), where \(\tau=a+bi, b>0\). Here the mirror partner is a torus \(\tilde{E}=\mathbb{C}/(\mathbb{Z}+\mathbb{Z})\) with Kähler metric \(b(dx^2+dy^2)\). It is also equipped with a form \(B=a dx\wedge dy\). The authors give a beautiful, very explicit description of the two categories involved in the mirror duality.
books
exposition
- http://arxiv.org/abs/1506.07757
- Port, Andrew. “An Introduction to Homological Mirror Symmetry and the Case of Elliptic Curves.” arXiv:1501.00730 [math], January 4, 2015. http://arxiv.org/abs/1501.00730.
- Quigley, Callum. “Mirror Symmetry in Physics: The Basics.” arXiv:1412.8180 [hep-Th], December 28, 2014. http://arxiv.org/abs/1412.8180.
- Chan, Kwokwai. “SYZ Mirror Symmetry for Toric Varieties.” arXiv:1412.7231 [math-Ph], December 22, 2014. http://arxiv.org/abs/1412.7231.
- Clader, Emily, and Yongbin Ruan. “Mirror Symmetry Constructions.” arXiv:1412.1268 [hep-Th, Physics:math-Ph], December 3, 2014. http://arxiv.org/abs/1412.1268.
- Hosono, Shinobu, and Hiromichi Takagi. “Mirror Symmetry and Projective Geometry of Fourier-Mukai Partners.” arXiv:1410.1254 [math], October 6, 2014. http://arxiv.org/abs/1410.1254.
- Chan, Kwokwai. “The Strominger-Yau-Zaslow Conjecture and Its Impact.” arXiv:1408.6062 [math], August 26, 2014. http://arxiv.org/abs/1408.6062.
- Ueda, Kazushi. “Mirror Symmetry and K3 Surfaces.” arXiv:1407.1566 [math], July 6, 2014. http://arxiv.org/abs/1407.1566.
- http://www.kias.re.kr/file/NewsletterNo37.pdf
- Lectures on Mirror Symmetry, Derived Categories, and D-branes Authors: Anton Kapustin, Dmitri Orlov http://arxiv.org/abs/math/0308173
- Yau, Shing-Tung, ed. 1992. Essays on Mirror Manifolds. Hong Kong: International Press. http://www.ams.org/mathscinet-getitem?mr=1191418.
articles
- Schaug, Andrew. “Quantum Mirror Symmetry for Borcea-Voisin Threefolds.” arXiv:1510.08333 [math-Ph], October 28, 2015. http://arxiv.org/abs/1510.08333.
- Cao, Yalong, and Naichung Conan Leung. “Remarks on Mirror Symmetry of Donaldson-Thomas Theory for Calabi-Yau 4-Folds.” arXiv:1506.04218 [math-Ph], June 12, 2015. http://arxiv.org/abs/1506.04218.
- Kanazawa, Atsushi, and Siu-Cheong Lau. “Geometric Transitions and SYZ Mirror Symmetry.” arXiv:1503.03829 [math], March 12, 2015. http://arxiv.org/abs/1503.03829.
- Sheridan, Nicholas. “Homological Mirror Symmetry for Calabi-Yau Hypersurfaces in Projective Space.” arXiv:1111.0632 [math], November 2, 2011. http://arxiv.org/abs/1111.0632.
- Hiep, Dang Tuan. “Rational Curves on Calabi-Yau Threefolds: Verifying Mirror Symmetry Predictions.” arXiv:1409.3712 [math], September 12, 2014. http://arxiv.org/abs/1409.3712.
- Polishchuk, Alexander, and Eric Zaslow. 1998. “Categorical Mirror Symmetry: The Elliptic Curve.” Advances in Theoretical and Mathematical Physics 2 (2): 443–470.
- Kontsevich, Maxim. 1995. “Homological Algebra of Mirror Symmetry.” In Proceedings of the International Congress of Mathematicians, Vol.\ 1, 2 (Zürich, 1994), 120–139. Basel: Birkhäuser. http://www.ams.org/mathscinet-getitem?mr=1403918.
- Candelas, Philip, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. 1991. “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.” Nuclear Physics. B 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6.
- Greene, B. R., and M. R. Plesser. 1990. “Duality in Calabi-Yau Moduli Space.” Nuclear Physics. B 338 (1): 15–37. doi:10.1016/0550-3213(90)90622-K.
- Candelas, P., M. Lynker, and R. Schimmrigk. 1990. “Calabi-Yau Manifolds in Weighted \(\bf P_4\).” Nuclear Physics. B 341 (2): 383–402. doi:10.1016/0550-3213(90)90185-G.
메타데이터
위키데이터
- ID : Q5914418
Spacy 패턴 목록
- [{'LOWER': 'mirror'}, {'LEMMA': 'symmetry'}]
- [{'LOWER': 'mirror'}, {'LOWER': 'symmetry'}, {'OP': '*'}, {'LOWER': 'string'}, {'LOWER': 'theory'}, {'LEMMA': ')'}]