"Cartan datum"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 10개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
Cartan datum <math>(A,P^{\vee},P,\Pi^{\vee},\Pi)</math>
 +
 
* <math>A=(a_{ij})_{i,j\in I}</math> GCM
 
* <math>A=(a_{ij})_{i,j\in I}</math> GCM
* <math>P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})</math> : dual weight lattice
+
* <math>P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})</math> : co-weight lattice
* <math>\mathfrak{h}=\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}</math>
+
* <math>\mathfrak{h}=\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}</math> : Cartan subalgebra
 
* <math>P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}</math> : weight lattice
 
* <math>P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}</math> : weight lattice
 
* <math>\Pi^{\vee}=\{h_{i}|i\in I\}</math> : simple coroots
 
* <math>\Pi^{\vee}=\{h_{i}|i\in I\}</math> : simple coroots
* <math>\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in \alpha_{i}(h_j}=a_{ji}\}</math> : simple coroots
+
* <math>\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_{ji}\}</math> : simple roots
 +
 
 +
 +
 
 +
fundamental weights
 +
 
 +
<math>\{\Lambda_{i}\in\mathfrak{h}^{*}|i\in I, \Lambda_{i}(h_j)=\delta_{ij},\Lambda_{i}(d_j)=0\}</math>
 +
 
 +
<math>Q=\bigoplus_{i\in I}\mathbb{Z}\alpha_{i}</math> : root lattice
 +
 
 +
 +
 
 +
Weyl group <math>W=\langle r_{i}|i\in I\rangle</math>
 +
 
 +
 +
 
 +
 +
 
 +
==세르 관계식==
 +
 
 +
* l : 리대수 <math>\mathfrak{g}</math>의 rank
 +
* <math>(a_{ij})</math> : 카르탄 행렬
 +
* 생성원 <math>e_i,h_i,f_i , (i=1,2,\cdots, l)</math>
 +
*  세르 관계식
 +
** <math>\left[h_i,h_j\right]=0</math>
 +
** <math>\left[e_i,f_j\right]=\delta _{i,j}h_i</math>
 +
** <math>\left[h_i,e_j\right]=a_{i,j}e_j</math>
 +
** <math>\left[h_i,f_j\right]=-a_{i,j}f_j</math>
 +
** <math>\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0</math> (<math>i\neq j</math>)
 +
** <math>\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0</math> (<math>i\neq j</math>)
 +
[[분류:Lie theory]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 04:14 기준 최신판

Cartan datum \((A,P^{\vee},P,\Pi^{\vee},\Pi)\)

  • \(A=(a_{ij})_{i,j\in I}\) GCM
  • \(P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})\) : co-weight lattice
  • \(\mathfrak{h}=\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}\) : Cartan subalgebra
  • \(P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}\) : weight lattice
  • \(\Pi^{\vee}=\{h_{i}|i\in I\}\) : simple coroots
  • \(\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_{ji}\}\) : simple roots


fundamental weights

\(\{\Lambda_{i}\in\mathfrak{h}^{*}|i\in I, \Lambda_{i}(h_j)=\delta_{ij},\Lambda_{i}(d_j)=0\}\)

\(Q=\bigoplus_{i\in I}\mathbb{Z}\alpha_{i}\) : root lattice


Weyl group \(W=\langle r_{i}|i\in I\rangle\)



세르 관계식

  • l : 리대수 \(\mathfrak{g}\)의 rank
  • \((a_{ij})\) : 카르탄 행렬
  • 생성원 \(e_i,h_i,f_i , (i=1,2,\cdots, l)\)
  • 세르 관계식
    • \(\left[h_i,h_j\right]=0\)
    • \(\left[e_i,f_j\right]=\delta _{i,j}h_i\)
    • \(\left[h_i,e_j\right]=a_{i,j}e_j\)
    • \(\left[h_i,f_j\right]=-a_{i,j}f_j\)
    • \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
    • \(\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0\) (\(i\neq j\))