"Cartan datum"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 6개는 보이지 않습니다) | |||
2번째 줄: | 2번째 줄: | ||
* <math>A=(a_{ij})_{i,j\in I}</math> GCM | * <math>A=(a_{ij})_{i,j\in I}</math> GCM | ||
− | * <math>P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})</math> : | + | * <math>P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})</math> : co-weight lattice |
* <math>\mathfrak{h}=\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}</math> : Cartan subalgebra | * <math>\mathfrak{h}=\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}</math> : Cartan subalgebra | ||
* <math>P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}</math> : weight lattice | * <math>P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}</math> : weight lattice | ||
* <math>\Pi^{\vee}=\{h_{i}|i\in I\}</math> : simple coroots | * <math>\Pi^{\vee}=\{h_{i}|i\in I\}</math> : simple coroots | ||
− | * <math>\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j) | + | * <math>\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_{ji}\}</math> : simple roots |
− | + | ||
fundamental weights | fundamental weights | ||
− | <math>\{\Lambda_{i}\in\mathfrak{h}^{*}|i\in I, \Lambda_{i}(h_j) | + | <math>\{\Lambda_{i}\in\mathfrak{h}^{*}|i\in I, \Lambda_{i}(h_j)=\delta_{ij},\Lambda_{i}(d_j)=0\}</math> |
<math>Q=\bigoplus_{i\in I}\mathbb{Z}\alpha_{i}</math> : root lattice | <math>Q=\bigoplus_{i\in I}\mathbb{Z}\alpha_{i}</math> : root lattice | ||
− | + | ||
Weyl group <math>W=\langle r_{i}|i\in I\rangle</math> | Weyl group <math>W=\langle r_{i}|i\in I\rangle</math> | ||
− | + | ||
− | + | ||
==세르 관계식== | ==세르 관계식== | ||
− | * l : 리대수 <math>\mathfrak{g}</math>의 | + | * l : 리대수 <math>\mathfrak{g}</math>의 rank |
− | * <math>(a_{ij})</math> | + | * <math>(a_{ij})</math> : 카르탄 행렬 |
* 생성원 <math>e_i,h_i,f_i , (i=1,2,\cdots, l)</math> | * 생성원 <math>e_i,h_i,f_i , (i=1,2,\cdots, l)</math> | ||
− | * 세르 관계식 | + | * 세르 관계식 |
** <math>\left[h_i,h_j\right]=0</math> | ** <math>\left[h_i,h_j\right]=0</math> | ||
** <math>\left[e_i,f_j\right]=\delta _{i,j}h_i</math> | ** <math>\left[e_i,f_j\right]=\delta _{i,j}h_i</math> | ||
36번째 줄: | 36번째 줄: | ||
** <math>\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0</math> (<math>i\neq j</math>) | ** <math>\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0</math> (<math>i\neq j</math>) | ||
** <math>\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0</math> (<math>i\neq j</math>) | ** <math>\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0</math> (<math>i\neq j</math>) | ||
+ | [[분류:Lie theory]] | ||
+ | [[분류:migrate]] |
2020년 12월 28일 (월) 04:14 기준 최신판
Cartan datum \((A,P^{\vee},P,\Pi^{\vee},\Pi)\)
- \(A=(a_{ij})_{i,j\in I}\) GCM
- \(P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})\) : co-weight lattice
- \(\mathfrak{h}=\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}\) : Cartan subalgebra
- \(P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}\) : weight lattice
- \(\Pi^{\vee}=\{h_{i}|i\in I\}\) : simple coroots
- \(\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_{ji}\}\) : simple roots
fundamental weights
\(\{\Lambda_{i}\in\mathfrak{h}^{*}|i\in I, \Lambda_{i}(h_j)=\delta_{ij},\Lambda_{i}(d_j)=0\}\)
\(Q=\bigoplus_{i\in I}\mathbb{Z}\alpha_{i}\) : root lattice
Weyl group \(W=\langle r_{i}|i\in I\rangle\)
세르 관계식
- l : 리대수 \(\mathfrak{g}\)의 rank
- \((a_{ij})\) : 카르탄 행렬
- 생성원 \(e_i,h_i,f_i , (i=1,2,\cdots, l)\)
- 세르 관계식
- \(\left[h_i,h_j\right]=0\)
- \(\left[e_i,f_j\right]=\delta _{i,j}h_i\)
- \(\left[h_i,e_j\right]=a_{i,j}e_j\)
- \(\left[h_i,f_j\right]=-a_{i,j}f_j\)
- \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
- \(\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0\) (\(i\neq j\))