"감마곱 (Gamma Products)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 14개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
*  자연수 n에 대한 잉여계의 부분집합 A에 대하여, 다음과 같은 감마함수의 곱이 언제 닫힌 형태로 표현되는가의 문제:<math>\prod_{k\in A}\Gamma(\frac{k}{n})</math>
 +
 +
 +
 +
 +
 +
==예==
 +
 +
<math>\Gamma \left(\frac{1}{6}\right) \Gamma \left(\frac{5}{6}\right)=2\sqrt{\pi }</math>
 +
 +
<math>\Gamma \left(\frac{1}{10}\right) \Gamma \left(\frac{3}{10}\right) \Gamma \left(\frac{7}{10}\right) \Gamma \left(\frac{9}{10}\right)=4 \pi ^2</math>
 +
 +
<math>\Gamma \left(\frac{1}{14}\right) \Gamma \left(\frac{9}{14}\right) \Gamma \left(\frac{11}{14}\right)=4{\pi ^{3/2}}</math>
 +
 +
<math>\Gamma \left(\frac{3}{14}\right) \Gamma \left(\frac{5}{14}\right) \Gamma \left(\frac{13}{14}\right)=2\pi ^{3/2}</math>
 +
 +
<math>\Gamma \left(\frac{1}{18}\right) \Gamma \left(\frac{5}{18}\right) \Gamma \left(\frac{7}{18}\right) \Gamma \left(\frac{11}{18}\right) \Gamma \left(\frac{13}{18}\right) \Gamma \left(\frac{17}{18}\right)=8 \pi ^3</math>
 +
 +
<math>\Gamma \left(\frac{1}{22}\right) \Gamma \left(\frac{3}{22}\right) \Gamma \left(\frac{5}{22}\right) \Gamma \left(\frac{7}{22}\right) \Gamma \left(\frac{9}{22}\right) \Gamma \left(\frac{13}{22}\right) \Gamma \left(\frac{15}{22}\right) \Gamma \left(\frac{17}{22}\right) \Gamma \left(\frac{19}{22}\right) \Gamma \left(\frac{21}{22}\right)=32 \pi ^5</math>
 +
 +
<math>\Gamma \left(\frac{1}{26}\right) \Gamma \left(\frac{3}{26}\right) \Gamma \left(\frac{5}{26}\right) \Gamma \left(\frac{7}{26}\right) \Gamma \left(\frac{9}{26}\right) \Gamma \left(\frac{11}{26}\right) \Gamma \left(\frac{15}{26}\right) \Gamma \left(\frac{17}{26}\right) \Gamma \left(\frac{19}{26}\right) \Gamma \left(\frac{21}{26}\right) \Gamma \left(\frac{23}{26}\right) \Gamma \left(\frac{25}{26}\right)=64 \pi ^6</math>
 +
 +
<math>\Gamma \left(\frac{1}{30}\right) \Gamma \left(\frac{17}{30}\right) \Gamma \left(\frac{19}{30}\right) \Gamma \left(\frac{23}{30}\right)=8 \pi ^2</math>
 +
 +
<math>\Gamma \left(\frac{1}{34}\right) \Gamma \left(\frac{9}{34}\right) \Gamma \left(\frac{13}{34}\right) \Gamma \left(\frac{15}{34}\right) \Gamma \left(\frac{19}{34}\right) \Gamma \left(\frac{21}{34}\right) \Gamma \left(\frac{25}{34}\right) \Gamma \left(\frac{33}{34}\right)=16 \pi ^4</math>
 +
 +
 +
 +
 +
==메모==
 +
 +
* http://mathoverflow.net/questions/9878/a-product-of-gamma-values-over-the-numbers-coprime-to-n
 +
 +
 +
 +
==관련된 항목들==
 +
 +
* [[Chowla-셀베르그 공식]]
 +
* [[1부터 n까지의 최소공배수]]
 +
 +
 +
 +
 +
 +
==수학용어번역==
 +
 +
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 +
* 발음사전 http://www.forvo.com/search/
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 +
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 +
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 +
 +
 +
 +
 +
 +
==사전 형태의 자료==
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 +
 +
 +
 +
 +
 +
==관련논문==
 +
 +
* Luschny, Peter, and Stefan Wehmeier. 2009. “The lcm(1,2,...,n) as a product of sine values sampled over the points in Farey sequences.” <em>0909.1838</em> (September 10). http://arxiv.org/abs/0909.1838 .
 +
*  Martin, Greg. 2009. “A product of Gamma function values at fractions with the same denominator.” <em>0907.4384</em> (July 24). http://arxiv.org/abs/0907.4384 .
 +
* Nijenhuis, Albert. 2009. “Small Gamma Products with Simple Values.” <em>0907.1689</em> (July 9). http://arxiv.org/abs/0907.1689 .
 +
*  Problem 11426, M. L. Glasser, The American Mathematical Monthly, Vol. 116, No. 4 (Apr., 2009), p. 365 http://www.jstor.org/stable/40391099
 +
** solution [http://math.la.asu.edu/%7Echeckman/AMM/11426_Heckman.pdf http://math.la.asu.edu/~checkman/AMM/11426_Heckman.pdf]
 +
* http://www.jstor.org/action/doBasicSearch?Query=
 +
* http://www.ams.org/mathscinet
 +
* http://dx.doi.org/

2020년 12월 28일 (월) 02:03 기준 최신판

개요

  • 자연수 n에 대한 잉여계의 부분집합 A에 대하여, 다음과 같은 감마함수의 곱이 언제 닫힌 형태로 표현되는가의 문제\[\prod_{k\in A}\Gamma(\frac{k}{n})\]



\(\Gamma \left(\frac{1}{6}\right) \Gamma \left(\frac{5}{6}\right)=2\sqrt{\pi }\)

\(\Gamma \left(\frac{1}{10}\right) \Gamma \left(\frac{3}{10}\right) \Gamma \left(\frac{7}{10}\right) \Gamma \left(\frac{9}{10}\right)=4 \pi ^2\)

\(\Gamma \left(\frac{1}{14}\right) \Gamma \left(\frac{9}{14}\right) \Gamma \left(\frac{11}{14}\right)=4{\pi ^{3/2}}\)

\(\Gamma \left(\frac{3}{14}\right) \Gamma \left(\frac{5}{14}\right) \Gamma \left(\frac{13}{14}\right)=2\pi ^{3/2}\)

\(\Gamma \left(\frac{1}{18}\right) \Gamma \left(\frac{5}{18}\right) \Gamma \left(\frac{7}{18}\right) \Gamma \left(\frac{11}{18}\right) \Gamma \left(\frac{13}{18}\right) \Gamma \left(\frac{17}{18}\right)=8 \pi ^3\)

\(\Gamma \left(\frac{1}{22}\right) \Gamma \left(\frac{3}{22}\right) \Gamma \left(\frac{5}{22}\right) \Gamma \left(\frac{7}{22}\right) \Gamma \left(\frac{9}{22}\right) \Gamma \left(\frac{13}{22}\right) \Gamma \left(\frac{15}{22}\right) \Gamma \left(\frac{17}{22}\right) \Gamma \left(\frac{19}{22}\right) \Gamma \left(\frac{21}{22}\right)=32 \pi ^5\)

\(\Gamma \left(\frac{1}{26}\right) \Gamma \left(\frac{3}{26}\right) \Gamma \left(\frac{5}{26}\right) \Gamma \left(\frac{7}{26}\right) \Gamma \left(\frac{9}{26}\right) \Gamma \left(\frac{11}{26}\right) \Gamma \left(\frac{15}{26}\right) \Gamma \left(\frac{17}{26}\right) \Gamma \left(\frac{19}{26}\right) \Gamma \left(\frac{21}{26}\right) \Gamma \left(\frac{23}{26}\right) \Gamma \left(\frac{25}{26}\right)=64 \pi ^6\)

\(\Gamma \left(\frac{1}{30}\right) \Gamma \left(\frac{17}{30}\right) \Gamma \left(\frac{19}{30}\right) \Gamma \left(\frac{23}{30}\right)=8 \pi ^2\)

\(\Gamma \left(\frac{1}{34}\right) \Gamma \left(\frac{9}{34}\right) \Gamma \left(\frac{13}{34}\right) \Gamma \left(\frac{15}{34}\right) \Gamma \left(\frac{19}{34}\right) \Gamma \left(\frac{21}{34}\right) \Gamma \left(\frac{25}{34}\right) \Gamma \left(\frac{33}{34}\right)=16 \pi ^4\)



메모


관련된 항목들



수학용어번역




사전 형태의 자료



관련논문