"Gieseking's constant"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 12개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
[http://pythagoras0.springnote.com/pages/6091635 트리감마 함수(trigamma function)]
 +
 +
<math>\psi^{(1)}(z + 1) - \psi^{(1)}(z) =-\frac{1}{z^{2}}</math>
 +
 +
<math>\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{4}{3})=9</math>
 +
 +
 +
 +
 +
 +
==Gieseking's constant==
 +
 +
<math>\operatorname{Cl}_2(\frac{\pi}{3})=\frac{\sqrt{3}}{12}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))</math>
 +
 
http://mathworld.wolfram.com/GiesekingsConstant.html
 
http://mathworld.wolfram.com/GiesekingsConstant.html
 +
 +
http://www.research.att.com/~njas/sequences/A143298
 +
 +
http://www.research.att.com/~njas/sequences/A091518
  
 
http://www.wolframalpha.com/input/?i=Gieseking's+constant.
 
http://www.wolframalpha.com/input/?i=Gieseking's+constant.
  
http://www.research.att.com/~njas/sequences/A143298
+
http://www.wolframalpha.com/input/?i=sqrt(3)*(trigamma(1/3)-trigamma(2/3))/12
 +
 
 +
 +
 
 +
  
 
+
[http://www.jstor.org/stable/2690774 The Newest Inductee in the Number Hall of Fame]
  
define similarly
+
* Colin C. Adams, Mathematics Magazine, Vol. 71, No. 5 (Dec., 1998), pp. 341-349
 +
[[분류:math and physics]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 04:21 기준 최신판

트리감마 함수(trigamma function)

\(\psi^{(1)}(z + 1) - \psi^{(1)}(z) =-\frac{1}{z^{2}}\)

\(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{4}{3})=9\)



Gieseking's constant

\(\operatorname{Cl}_2(\frac{\pi}{3})=\frac{\sqrt{3}}{12}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))\)

http://mathworld.wolfram.com/GiesekingsConstant.html

http://www.research.att.com/~njas/sequences/A143298

http://www.research.att.com/~njas/sequences/A091518

http://www.wolframalpha.com/input/?i=Gieseking's+constant.

http://www.wolframalpha.com/input/?i=sqrt(3)*(trigamma(1/3)-trigamma(2/3))/12



The Newest Inductee in the Number Hall of Fame

  • Colin C. Adams, Mathematics Magazine, Vol. 71, No. 5 (Dec., 1998), pp. 341-349