"Parthasarathy-Ranga Rao-Varadarajan conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * PRV conjecture * notations ** $\nu$ integral weight ** $\overline{\nu}$ the dominant integral weight of $W\cdot \nu$ ** $V(\overline{\nu})$ highest weight represen...)
 
 
(다른 사용자 한 명의 중간 판 9개는 보이지 않습니다)
2번째 줄: 2번째 줄:
 
* PRV conjecture
 
* PRV conjecture
 
* notations
 
* notations
** $\nu$ integral weight
+
** <math>\nu</math> integral weight
** $\overline{\nu}$ the dominant integral weight of $W\cdot \nu$
+
** <math>\overline{\nu}</math> the dominant integral weight of <math>W\cdot \nu</math>
** $V(\overline{\nu})$ highest weight representation
+
** <math>V(\overline{\nu})</math> highest weight representation
* $\lambda,\mu$ dominant integral weights and $w\in W$, the module $V(\overline{\lambda+w\mu})$ occurs with multiplicity at least one in $V(\lambda)\otimes V(\mu)$
+
* <math>\lambda,\mu</math> dominant integral weights and <math>w\in W</math>, the module <math>V(\overline{\lambda+w\mu})</math> occurs with multiplicity at least one in <math>V(\lambda)\otimes V(\mu)</math>
 +
 
 +
 
 +
==memo==
 +
* http://mathoverflow.net/questions/163217/tensor-products-of-two-irreducible-representations-of-reductive-groups-and-their/163239#163239
 +
 
 +
 
 +
==related items==
 +
* [[Tensor product decompositions of representations of Lie algebras]]
 +
 
 +
 
 +
==expositions==
 +
* Khare, Apoorva. 2012. “Representations of Complex Semi-simple Lie Groups and Lie Algebras.” arXiv:1208.0416 (August 2). http://arxiv.org/abs/1208.0416.
 +
* Kumar, Shrawan. 2010. “Tensor Product Decomposition.” In Proceedings of the International Congress of Mathematicians. Volume III, 1226–1261. New Delhi: Hindustan Book Agency. http://www.ams.org/mathscinet-getitem?mr=2827839. http://www.unc.edu/math/Faculty/kumar/papers/kumar60.pdf
 +
 
  
  
 
==articles==
 
==articles==
 +
* Montagard, P. L., B. Pasquier, and N. Ressayre. ‘Two Generalizations of the PRV Conjecture’. Compositio Mathematica 147, no. 04 (July 2011): 1321–36. doi:10.1112/S0010437X10005233.
 +
* Kumar, Shrawan. ‘A Refinement of the PRV Conjecture’. Inventiones Mathematicae 97, no. 2 (1 June 1989): 305–11. doi:10.1007/BF01389044.
 
* Kumar, Shrawan. 1988. “Proof of the Parthasarathy-Ranga Rao-Varadarajan Conjecture.” Inventiones Mathematicae 93 (1): 117–130. doi:10.1007/BF01393689. http://link.springer.com/article/10.1007%2FBF01393689
 
* Kumar, Shrawan. 1988. “Proof of the Parthasarathy-Ranga Rao-Varadarajan Conjecture.” Inventiones Mathematicae 93 (1): 117–130. doi:10.1007/BF01393689. http://link.springer.com/article/10.1007%2FBF01393689
 +
* Parthasarathy, K. R., R. Ranga Rao, and V. S. Varadarajan. ‘Representations of Complex Semi-Simple Lie Groups and Lie Algebras’. Annals of Mathematics, Second Series, 85, no. 3 (1 May 1967): 383–429. doi:10.2307/1970351.
 +
* Parthasarathy, K. R., R. Ranga Rao, and V. S. Varadarajan. ‘Representations of Complex Semisimple Lie Groups and Lie Algebras’. Bulletin of the American Mathematical Society 72, no. 3 (1966): 522–25. doi:10.1090/S0002-9904-1966-11528-8.
 +
 +
 +
[[분류:Lie theory]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 05:34 기준 최신판

introduction

  • PRV conjecture
  • notations
    • \(\nu\) integral weight
    • \(\overline{\nu}\) the dominant integral weight of \(W\cdot \nu\)
    • \(V(\overline{\nu})\) highest weight representation
  • \(\lambda,\mu\) dominant integral weights and \(w\in W\), the module \(V(\overline{\lambda+w\mu})\) occurs with multiplicity at least one in \(V(\lambda)\otimes V(\mu)\)


memo


related items


expositions


articles

  • Montagard, P. L., B. Pasquier, and N. Ressayre. ‘Two Generalizations of the PRV Conjecture’. Compositio Mathematica 147, no. 04 (July 2011): 1321–36. doi:10.1112/S0010437X10005233.
  • Kumar, Shrawan. ‘A Refinement of the PRV Conjecture’. Inventiones Mathematicae 97, no. 2 (1 June 1989): 305–11. doi:10.1007/BF01389044.
  • Kumar, Shrawan. 1988. “Proof of the Parthasarathy-Ranga Rao-Varadarajan Conjecture.” Inventiones Mathematicae 93 (1): 117–130. doi:10.1007/BF01393689. http://link.springer.com/article/10.1007%2FBF01393689
  • Parthasarathy, K. R., R. Ranga Rao, and V. S. Varadarajan. ‘Representations of Complex Semi-Simple Lie Groups and Lie Algebras’. Annals of Mathematics, Second Series, 85, no. 3 (1 May 1967): 383–429. doi:10.2307/1970351.
  • Parthasarathy, K. R., R. Ranga Rao, and V. S. Varadarajan. ‘Representations of Complex Semisimple Lie Groups and Lie Algebras’. Bulletin of the American Mathematical Society 72, no. 3 (1966): 522–25. doi:10.1090/S0002-9904-1966-11528-8.