"Theta divisor"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (새 문서: It is a well known fact that the Theta divisor on the Jacobian of a non-singular curve is a determinantal variety, i.e. is defined by the zero set of a determinant. * Rahmati, Mohamm...) |
Pythagoras0 (토론 | 기여) |
||
| (사용자 2명의 중간 판 13개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | It is a well known fact that the Theta divisor on the Jacobian of a non-singular curve is a determinantal variety, i.e. is defined by the zero set of a determinant. | + | ==introduction== |
| + | * It is a well known fact that the Theta divisor on the Jacobian of a non-singular curve is a determinantal variety, i.e. is defined by the zero set of a determinant. | ||
| + | * It is a classical result that the evaluation at the n-torsion points, <math>n\geq 4</math> of Riemann's theta function completely determines the abelian variety embedded in <math>\mathbb{P}^{n^g-1}</math>. (See Mumford's Tata lectures 3) | ||
| + | |||
| + | ==related itmes== | ||
| + | * [[Riemann theta function]] | ||
| + | |||
| + | |||
| + | ==expositions== | ||
| + | * Grushevsky, Samuel, and Klaus Hulek. “Geometry of Theta Divisors --- a Survey.” arXiv:1204.2734 [math], April 12, 2012. http://arxiv.org/abs/1204.2734. | ||
| + | |||
| + | |||
| + | |||
| + | ==articles== | ||
| + | * Emily Clader, Samuel Grushevsky, Felix Janda, Dmitry Zakharov, Powers of the theta divisor and relations in the tautological ring, arXiv:1605.05425 [math.AG], May 18 2016, http://arxiv.org/abs/1605.05425 | ||
| + | * Jungkai Chen, Zhi Jiang, Zhiyu Tian, Irregular varieites with geometric genus one, theta divisors, and fake tori, arXiv:1604.07503 [math.AG], April 26 2016, http://arxiv.org/abs/1604.07503 | ||
| + | * Humberto A. Diaz, The motive of a smooth Theta divisor, http://arxiv.org/abs/1603.04345v1 | ||
| + | * Auffarth, Robert, Gian Pietro Pirola, and Riccardo Salvati Manni. “Torsion Points on Theta Divisors.” arXiv:1512.09296 [math], December 31, 2015. http://arxiv.org/abs/1512.09296. | ||
| + | * Izadi, Elham, and Jie Wang. “The Irreducibility of the Primal Cohomology of the Theta Divisor of an Abelian Fivefold.” arXiv:1510.00046 [math], September 30, 2015. http://arxiv.org/abs/1510.00046. | ||
| + | * Kass, Jesse Leo, and Nicola Pagani. “Extensions of the Universal Theta Divisor.” arXiv:1507.03564 [math], July 13, 2015. http://arxiv.org/abs/1507.03564. | ||
| + | * Krämer, Thomas. “Cubic Threefolds, Fano Surfaces and the Monodromy of the Gauss Map.” arXiv:1501.00226 [math], December 31, 2014. http://arxiv.org/abs/1501.00226. | ||
* Rahmati, Mohammad Reza. “Motive of Theta Divisor I.” arXiv:1411.3375 [math], October 30, 2014. http://arxiv.org/abs/1411.3375. | * Rahmati, Mohammad Reza. “Motive of Theta Divisor I.” arXiv:1411.3375 [math], October 30, 2014. http://arxiv.org/abs/1411.3375. | ||
| + | [[분류:migrate]] | ||
| + | |||
| + | ==메타데이터== | ||
| + | ===위키데이터=== | ||
| + | * ID : [https://www.wikidata.org/wiki/Q17104025 Q17104025] | ||
| + | ===Spacy 패턴 목록=== | ||
| + | * [{'LOWER': 'theta'}, {'LEMMA': 'divisor'}] | ||
2021년 2월 17일 (수) 02:13 기준 최신판
introduction
- It is a well known fact that the Theta divisor on the Jacobian of a non-singular curve is a determinantal variety, i.e. is defined by the zero set of a determinant.
- It is a classical result that the evaluation at the n-torsion points, \(n\geq 4\) of Riemann's theta function completely determines the abelian variety embedded in \(\mathbb{P}^{n^g-1}\). (See Mumford's Tata lectures 3)
expositions
- Grushevsky, Samuel, and Klaus Hulek. “Geometry of Theta Divisors --- a Survey.” arXiv:1204.2734 [math], April 12, 2012. http://arxiv.org/abs/1204.2734.
articles
- Emily Clader, Samuel Grushevsky, Felix Janda, Dmitry Zakharov, Powers of the theta divisor and relations in the tautological ring, arXiv:1605.05425 [math.AG], May 18 2016, http://arxiv.org/abs/1605.05425
- Jungkai Chen, Zhi Jiang, Zhiyu Tian, Irregular varieites with geometric genus one, theta divisors, and fake tori, arXiv:1604.07503 [math.AG], April 26 2016, http://arxiv.org/abs/1604.07503
- Humberto A. Diaz, The motive of a smooth Theta divisor, http://arxiv.org/abs/1603.04345v1
- Auffarth, Robert, Gian Pietro Pirola, and Riccardo Salvati Manni. “Torsion Points on Theta Divisors.” arXiv:1512.09296 [math], December 31, 2015. http://arxiv.org/abs/1512.09296.
- Izadi, Elham, and Jie Wang. “The Irreducibility of the Primal Cohomology of the Theta Divisor of an Abelian Fivefold.” arXiv:1510.00046 [math], September 30, 2015. http://arxiv.org/abs/1510.00046.
- Kass, Jesse Leo, and Nicola Pagani. “Extensions of the Universal Theta Divisor.” arXiv:1507.03564 [math], July 13, 2015. http://arxiv.org/abs/1507.03564.
- Krämer, Thomas. “Cubic Threefolds, Fano Surfaces and the Monodromy of the Gauss Map.” arXiv:1501.00226 [math], December 31, 2014. http://arxiv.org/abs/1501.00226.
- Rahmati, Mohammad Reza. “Motive of Theta Divisor I.” arXiv:1411.3375 [math], October 30, 2014. http://arxiv.org/abs/1411.3375.
메타데이터
위키데이터
- ID : Q17104025
Spacy 패턴 목록
- [{'LOWER': 'theta'}, {'LEMMA': 'divisor'}]