"일반 선형군의 표현론"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 하나는 보이지 않습니다) | |||
35번째 줄: | 35번째 줄: | ||
[[분류:대칭다항식]] | [[분류:대칭다항식]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q7433031 Q7433031] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'schur'}, {'LEMMA': 'algebra'}] |
2021년 2월 17일 (수) 02:24 기준 최신판
개요
- 일반 선형군 (general linear group)
메모
- 유한체 위의 일반 선형군 http://groupprops.subwiki.org/wiki/Linear_representation_theory_of_general_linear_group:GL%282,3%29
- http://www.maa.org/programs/maa-awards/writing-awards/representations-of-sl-2p
관련된 항목들
사전 형태의 자료
관련도서
- Green, J. A. 2007. Polynomial Representations of \(\rm GL_n\). augmented. Vol. 830. Lecture Notes in Mathematics. Berlin: Springer. http://www.ams.org/mathscinet-getitem?mr=2349209.
리뷰, 에세이, 강의노트
- Hashimoto, Schur algebras
- Wildon, Notes on polynomial representations of general linear groups
- Green, James A. 1981. “Polynomial Representations of GLn.” In Algebra Carbondale 1980, edited by Ralph K. Amayo, 124–140. Lecture Notes in Mathematics 848. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0090560.
- IX: Irreducible Polynomial Representations of GL(m). 2012. http://www.youtube.com/watch?v=2BGLPUjqAzE&feature=youtube_gdata_player.
- VIII: Schur Algebras and Polynomial Representations of GL(m). 2012. http://www.youtube.com/watch?v=cjhBwBlf_vk&feature=youtube_gdata_player.
관련논문
- Cheung, Man-Wai, Christian Ikenmeyer, and Sevak Mkrtchyan. “Symmetrizing Tableaux and the 5th Case of the Foulkes Conjecture.” arXiv:1509.03944 [math], September 13, 2015. http://arxiv.org/abs/1509.03944.
- Ikenmeyer, Christian. “On McKay’s Propagation Theorem for the Foulkes Conjecture.” arXiv:1509.04957 [math], September 16, 2015. http://arxiv.org/abs/1509.04957.
- Guan, Yonghui. “Brill’s Equations as a GL(V)-Module.” arXiv:1508.02293 [math], August 10, 2015. http://arxiv.org/abs/1508.02293.
메타데이터
위키데이터
- ID : Q7433031
Spacy 패턴 목록
- [{'LOWER': 'schur'}, {'LEMMA': 'algebra'}]