"정수계획법"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎노트: 새 문단)
 
 
(같은 사용자의 중간 판 하나는 보이지 않습니다)
12번째 줄: 12번째 줄:
 
===소스===
 
===소스===
 
  <references />
 
  <references />
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q6042592 Q6042592]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'integer'}, {'LEMMA': 'programming'}]

2021년 2월 17일 (수) 01:43 기준 최신판

노트

  • Computing exact solution to nonlinear integer programming: Convergent Lagrangian and objective level cut method.[1]
  • To make integer programming possible, several mathematical algorithms are used.[2]
  • Today, we explored using mixed-integer programming to make better decisions.[2]
  • This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability.[3]
  • The field of mixed integer programming has witnessed remarkable improvements in recent years in the capabilities of MIP algorithms.[4]
  • Zero-one linear programming (or binary integer programming) involves problems in which the variables are restricted to be either 0 or 1.[5]
  • It is used in a special case of integer programming, in which all the decision variables are integers.[5]
  • Integer programming is a branch of mathematical programming or optimization, which involves creating equations to solve problems.[6]
  • Unlike heuristics, integer programming, as a systematic search technique, cannot be applied to real-sized problems.[7]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'integer'}, {'LEMMA': 'programming'}]