"교차비(cross ratio)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 32개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==교차비==
  
 +
* 사영기하학의 기본개념
 +
* 네 복소수 <math>z_1,z_2,z_3,z_4</math>에 대하여 다음과 같이 정의됨.
 +
:<math>(z_1,z_2;z_3,z_4) = \frac{(z_1-z_3)(z_2-z_4)}{(z_2-z_3)(z_1-z_4)}</math>
 +
* <math>z_4=\infty</math> 인 경우
 +
:<math>(z_1,z_2;z_3,\infty) = \frac{(z_1-z_3)}{(z_2-z_3)}</math>
 +
 +
 +
 +
 +
 +
 +
 +
==대칭군과 교차비==
 +
* [[대칭군 (symmetric group)]]은 <math>\{1,2,3,4\}</math>에 작용한다
 +
* 조화비의 isotopy group은 다음과 같이 주어진다
 +
:<math>
 +
\left\{\left(
 +
\begin{array}{cccc}
 +
1 & 2 & 3 & 4 \\
 +
1 & 2 & 3 & 4
 +
\end{array}
 +
\right),\left(
 +
\begin{array}{cccc}
 +
1 & 2 & 3 & 4 \\
 +
2 & 1 & 4 & 3
 +
\end{array}
 +
\right),\left(
 +
\begin{array}{cccc}
 +
1 & 2 & 3 & 4 \\
 +
3 & 4 & 1 & 2
 +
\end{array}
 +
\right),\left(
 +
\begin{array}{cccc}
 +
1 & 2 & 3 & 4 \\
 +
4 & 3 & 2 & 1
 +
\end{array}
 +
\right)\right\}
 +
</math>
 +
즉 <math>(z_1,z_2;z_3,z_4)=(z_2,z_1;z_4,z_3)=(z_3,z_4;z_1,z_2)=(z_4,z_3;z_2,z_1)</math>
 +
* 조화비는 <math>S_4</math>의 작용에 의해 다음과 같이 변화한다
 +
:<math>(z_1, z_2; z_3, z_4) = \lambda</math>
 +
:<math>(z_1, z_2; z_4, z_3) = {1\over\lambda}</math>
 +
:<math>(z_1, z_3; z_4, z_2) = {1\over{1-\lambda}}</math>
 +
:<math>(z_1, z_3; z_2, z_4) = 1-\lambda</math>
 +
:<math>(z_1, z_4; z_3, z_2) = {\lambda\over{\lambda-1}}</math>
 +
:<math>(z_1, z_4; z_2, z_3) = {{\lambda-1}\over\lambda}</math>
 +
* 즉 대칭군에 의해 다음 값을 가질 수 있다
 +
:<math> \lambda, {1\over\lambda},{1\over{1-\lambda}},  1-\lambda, {\lambda\over{\lambda-1}}, {{\lambda-1}\over\lambda}</math>
 +
 +
 +
 +
 +
 +
==사영기하학과 교차비==
 +
* [[뫼비우스 변환]]이 네 점,  <math>z_1,z_2,z_3,z_4</math> 를  <math>w_1,w_2,w_3,w_4</math>로 보내는 경우, 교차비는 보존됨.
 +
:<math>\frac{(z_1-z_3)(z_2-z_4)}{(z_2-z_3)(z_1-z_4)} = \frac{(w_1-w_3)(w_2-w_4)}{(w_2-w_3)(w_1-w_4)}</math>
 +
즉 <math>ad-bc\neq 0</math>일 때,
 +
:<math>
 +
\frac{\left(z_1-z_3\right) \left(z_2-z_4\right)}{\left(z_2-z_3\right) \left(z_1-z_4\right)}=
 +
\frac{\left(\frac{a z_1+b}{c z_1+d}-\frac{a z_3+b}{c z_3+d}\right) \left(\frac{a z_2+b}{c z_2+d}-\frac{a z_4+b}{c z_4+d}\right)}{\left(\frac{a z_2+b}{c z_2+d}-\frac{a z_3+b}{c z_3+d}\right) \left(\frac{a z_1+b}{c z_1+d}-\frac{a z_4+b}{c z_4+d}\right)}
 +
</math>
 +
* 교차비는 사영기하학의 불변량이다
 +
[[파일:3259985-afigure006-riemann65.jpg]]
 +
 +
 +
 +
 +
 +
 +
 +
==관련된 항목들==
 +
 +
* [[뫼비우스 변환군과 기하학]]
 +
* [[타원 모듈라 λ-함수]]
 +
* [[다이로그 함수(dilogarithm)]]
 +
* [[원근법과 수학]]
 +
 +
 +
 +
 +
 +
==매스매티카 파일 및 계산 리소스==
 +
 +
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxY2Y4OWEwNWMtMGU0Zi00NTEwLTlkYjctZWE3NDE0YTA2YmM2&sort=name&layout=list&num=50
 +
* http://mathworld.wolfram.com/CrossRatio.html
 +
 +
 +
 +
 +
 +
==수학용어번역==
 +
* {{학술용어집|url=cross}}
 +
** cross ratio
 +
** 비조화비, 복비
 +
 +
 +
==사전 형태의 자료==
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/cross_ratio
 +
[[분류:복소함수론]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q899539 Q899539]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'cross'}, {'LOWER': '-'}, {'LEMMA': 'ratio'}]

2021년 2월 17일 (수) 04:59 기준 최신판

교차비

  • 사영기하학의 기본개념
  • 네 복소수 \(z_1,z_2,z_3,z_4\)에 대하여 다음과 같이 정의됨.

\[(z_1,z_2;z_3,z_4) = \frac{(z_1-z_3)(z_2-z_4)}{(z_2-z_3)(z_1-z_4)}\]

  • \(z_4=\infty\) 인 경우

\[(z_1,z_2;z_3,\infty) = \frac{(z_1-z_3)}{(z_2-z_3)}\]




대칭군과 교차비

\[ \left\{\left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array} \right),\left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array} \right),\left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array} \right),\left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{array} \right)\right\} \] 즉 \((z_1,z_2;z_3,z_4)=(z_2,z_1;z_4,z_3)=(z_3,z_4;z_1,z_2)=(z_4,z_3;z_2,z_1)\)

  • 조화비는 \(S_4\)의 작용에 의해 다음과 같이 변화한다

\[(z_1, z_2; z_3, z_4) = \lambda\] \[(z_1, z_2; z_4, z_3) = {1\over\lambda}\] \[(z_1, z_3; z_4, z_2) = {1\over{1-\lambda}}\] \[(z_1, z_3; z_2, z_4) = 1-\lambda\] \[(z_1, z_4; z_3, z_2) = {\lambda\over{\lambda-1}}\] \[(z_1, z_4; z_2, z_3) = {{\lambda-1}\over\lambda}\]

  • 즉 대칭군에 의해 다음 값을 가질 수 있다

\[ \lambda, {1\over\lambda},{1\over{1-\lambda}}, 1-\lambda, {\lambda\over{\lambda-1}}, {{\lambda-1}\over\lambda}\]



사영기하학과 교차비

  • 뫼비우스 변환이 네 점, \(z_1,z_2,z_3,z_4\) 를 \(w_1,w_2,w_3,w_4\)로 보내는 경우, 교차비는 보존됨.

\[\frac{(z_1-z_3)(z_2-z_4)}{(z_2-z_3)(z_1-z_4)} = \frac{(w_1-w_3)(w_2-w_4)}{(w_2-w_3)(w_1-w_4)}\] 즉 \(ad-bc\neq 0\)일 때, \[ \frac{\left(z_1-z_3\right) \left(z_2-z_4\right)}{\left(z_2-z_3\right) \left(z_1-z_4\right)}= \frac{\left(\frac{a z_1+b}{c z_1+d}-\frac{a z_3+b}{c z_3+d}\right) \left(\frac{a z_2+b}{c z_2+d}-\frac{a z_4+b}{c z_4+d}\right)}{\left(\frac{a z_2+b}{c z_2+d}-\frac{a z_3+b}{c z_3+d}\right) \left(\frac{a z_1+b}{c z_1+d}-\frac{a z_4+b}{c z_4+d}\right)} \]

  • 교차비는 사영기하학의 불변량이다

3259985-afigure006-riemann65.jpg




관련된 항목들



매스매티카 파일 및 계산 리소스



수학용어번역

  • cross - 대한수학회 수학용어집
    • cross ratio
    • 비조화비, 복비


사전 형태의 자료

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'cross'}, {'LOWER': '-'}, {'LEMMA': 'ratio'}]