"체르멜로-프란켈 집합론"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
Pythagoras0 (토론 | 기여) |
||
| 21번째 줄: | 21번째 줄: | ||
<references /> | <references /> | ||
| − | == 메타데이터 == | + | ==메타데이터== |
| − | |||
===위키데이터=== | ===위키데이터=== | ||
* ID : [https://www.wikidata.org/wiki/Q191849 Q191849] | * ID : [https://www.wikidata.org/wiki/Q191849 Q191849] | ||
| + | ===Spacy 패턴 목록=== | ||
| + | * [{'LOWER': 'zermelo'}, {'OP': '*'}, {'LOWER': 'fraenkel'}, {'LOWER': 'set'}, {'LEMMA': 'theory'}] | ||
| + | * [{'LEMMA': 'ZFC'}] | ||
| + | * [{'LOWER': 'zf'}, {'LEMMA': 'theory'}] | ||
| + | * [{'LOWER': 'zfc'}, {'LEMMA': 'theory'}] | ||
| + | * [{'LOWER': 'set'}, {'LEMMA': 'theory'}] | ||
| + | * [{'LOWER': 'zf'}, {'LOWER': 'set'}, {'LEMMA': 'theory'}] | ||
| + | * [{'LOWER': 'zfc'}, {'LOWER': 'set'}, {'LEMMA': 'theory'}] | ||
| + | * [{'LOWER': 'zermelo'}, {'OP': '*'}, {'LOWER': 'fraenkel'}, {'LOWER': 'set'}, {'LEMMA': 'theory'}] | ||
| + | * [{'LOWER': 'zermelo'}, {'OP': '*'}, {'LOWER': 'fraenkel'}, {'LEMMA': 'axiom'}] | ||
2021년 2월 17일 (수) 01:49 기준 최신판
노트
- Most notable is the Continuum Hypothesis discussed on page 1127, which was proved independent of ZFC by Paul Cohen in 1963.[1]
- The standard axioms of set theory (ZFC, the Zermelo-Fraenkel axioms with the Axiom of Choice) give us only partial information here.[2]
- As mentioned above ZFC requires an infinite number of first-order axioms.[3]
- Everything in standard ZFC ZFC is a pure set, which we will call simply a set; but there are also variations with urelements and classes.[4]
- ZFC ZFC adds (9) and is thus the strongest version without classes or additional axioms.[4]
- One often adds axioms for large cardinals to ZFC ZFC .[4]
- Adding this axiom to ZFC ZFC makes Tarski–Grothendieck set theory ( TG TG ).[4]
- If the axiom of choice is added it is known as ZFC.[5]
- ZFC is the acronym for Zermelo–Fraenkel set theory with the axiom of choice, formulated in first-order logic.[6]
- All formulations of ZFC imply that at least one set exists.[7]
- First, in the standard semantics of first-order logic in which ZFC is typically formalized, the domain of discourse must be nonempty.[7]
- Moreover, Robinson arithmetic can be interpreted in general set theory, a small fragment of ZFC.[7]
- Hence the consistency of ZFC cannot be proved within ZFC itself (unless it is actually inconsistent).[7]
- ZFC is an axiom system formulated in first-order logic with equality and with only one binary relation symbol \(\in\) for membership.[8]
- In ZFC one can develop the Cantorian theory of transfinite (i.e., infinite) ordinal and cardinal numbers.[8]
- In ZFC, one identifies the finite ordinals with the natural numbers.[8]
- In the case of exponentiation of singular cardinals, ZFC has a lot more to say.[8]
소스
- ↑ Note (c) for Implications for Mathematics and Its Foundations: A New Kind of Science
- ↑ Set Theory
- ↑ ZermeloFraenkelSetTheory
- ↑ 4.0 4.1 4.2 4.3 ZFC in nLab
- ↑ Zermelo-Fraenkel set theory
- ↑ Encyclopedia of Mathematics
- ↑ 7.0 7.1 7.2 7.3 Zermelo–Fraenkel set theory
- ↑ 8.0 8.1 8.2 8.3 Set Theory (Stanford Encyclopedia of Philosophy)
메타데이터
위키데이터
- ID : Q191849
Spacy 패턴 목록
- [{'LOWER': 'zermelo'}, {'OP': '*'}, {'LOWER': 'fraenkel'}, {'LOWER': 'set'}, {'LEMMA': 'theory'}]
- [{'LEMMA': 'ZFC'}]
- [{'LOWER': 'zf'}, {'LEMMA': 'theory'}]
- [{'LOWER': 'zfc'}, {'LEMMA': 'theory'}]
- [{'LOWER': 'set'}, {'LEMMA': 'theory'}]
- [{'LOWER': 'zf'}, {'LOWER': 'set'}, {'LEMMA': 'theory'}]
- [{'LOWER': 'zfc'}, {'LOWER': 'set'}, {'LEMMA': 'theory'}]
- [{'LOWER': 'zermelo'}, {'OP': '*'}, {'LOWER': 'fraenkel'}, {'LOWER': 'set'}, {'LEMMA': 'theory'}]
- [{'LOWER': 'zermelo'}, {'OP': '*'}, {'LOWER': 'fraenkel'}, {'LEMMA': 'axiom'}]