"다이로그 함수와 부정적분"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 16개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==개요== | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==오일러치환== | ||
+ | |||
+ | * 유리함수 <math>R(x,y)</math>와 <math>Q(x,y)</math>에 대하여 다음과 같은 적분에 대하여 [[오일러 치환]]을 사용할 수 있다:<math>\int R(x,\sqrt{ax^2+bx+c})\log Q(x,\sqrt{ax^2+bx+c})\,dx</math> | ||
+ | * <math>c>0</math> 일때, <math>\sqrt{ax^2+bx+c}=xt+\sqrt{c}</math> 로 치환 | ||
+ | * 예:<math>I=\int \frac{1}{x\sqrt{1+x^2}}\log(x+\sqrt{1+x^2})\,dx</math> :<math>\sqrt{1+x^2}=xt+1</math>:<math>x=\frac{2t}{1-t^2}</math>:<math>I=\int\frac{1}{t}\{\log(1+t)-\log(1-t)\}\,dt</math>:<math>=\operatorname{Li}_{2}(\frac{\sqrt{1+x^2}-1}{x})-\operatorname{Li}_{2}(1-\frac{\sqrt{1+x^2}}{x})</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==여러가지 부정적분== | ||
+ | |||
+ | |||
+ | |||
+ | <math>\alpha\neq\gamma</math>인 경우 | ||
+ | |||
+ | <math>\int\frac{\log(\alpha+t)}{\gamma+t}\,dt=\log(\alpha-\gamma)\log(\frac{\gamma+t}{\gamma})-\operatorname{Li}_{2}(\frac{\gamma+t}{\gamma-\alpha})+C</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\int\frac{\log(\gamma+t)}{\gamma+t}\,dt=\frac{1}{2}\log^2(\gamma+t)+C</math> | ||
+ | |||
+ | <math>\int_{0}^{x}\frac{\log x}{\sqrt{1+x^2}}\,dx=\frac{1}{2}\operatorname{Li}_2((\sqrt{1+x^2}-x)^2)+\frac{1}{2}\log^2(\frac{\sqrt{1+x^2}+x}{2})</math> | ||
+ | |||
+ | <math>\int_{0}^{x}\frac{\log (1+x^2)}{\sqrt{1-x}}\,dx=\frac{1}{4}\operatorname{Li}_2(-x)+\frac{1}{2}\operatorname{Li}_2(\frac{2x}{1+x^2})-\operatorname{Li}_2(x)+\frac{1}{4}\log^2(1+x^2)-\log(1-x)\log(1+x^2)</math> | ||
+ | |||
+ | <math>\int_{0}^{x}\frac{\log x\log(x-1)}{x}\,dx=\operatorname{Li}_3(x)-\log x\operatorname{Li}_2(x)</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==역사== | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | * [[수학사 연표]] | ||
+ | * | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==메모== | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==관련된 항목들== | ||
+ | |||
+ | * [[적분의 주제들]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==수학용어번역== | ||
+ | |||
+ | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
+ | * 발음사전 http://www.forvo.com/search/ | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==사전 형태의 자료== | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | ** http://www.research.att.com/~njas/sequences/?q= | ||
+ | [[분류:다이로그]] | ||
+ | [[분류:적분]] |
2020년 11월 16일 (월) 06:32 기준 최신판
개요
오일러치환
- 유리함수 \(R(x,y)\)와 \(Q(x,y)\)에 대하여 다음과 같은 적분에 대하여 오일러 치환을 사용할 수 있다\[\int R(x,\sqrt{ax^2+bx+c})\log Q(x,\sqrt{ax^2+bx+c})\,dx\]
- \(c>0\) 일때, \(\sqrt{ax^2+bx+c}=xt+\sqrt{c}\) 로 치환
- 예\[I=\int \frac{1}{x\sqrt{1+x^2}}\log(x+\sqrt{1+x^2})\,dx\] \[\sqrt{1+x^2}=xt+1\]\[x=\frac{2t}{1-t^2}\]\[I=\int\frac{1}{t}\{\log(1+t)-\log(1-t)\}\,dt\]\[=\operatorname{Li}_{2}(\frac{\sqrt{1+x^2}-1}{x})-\operatorname{Li}_{2}(1-\frac{\sqrt{1+x^2}}{x})\]
여러가지 부정적분
\(\alpha\neq\gamma\)인 경우
\(\int\frac{\log(\alpha+t)}{\gamma+t}\,dt=\log(\alpha-\gamma)\log(\frac{\gamma+t}{\gamma})-\operatorname{Li}_{2}(\frac{\gamma+t}{\gamma-\alpha})+C\)
\(\int\frac{\log(\gamma+t)}{\gamma+t}\,dt=\frac{1}{2}\log^2(\gamma+t)+C\)
\(\int_{0}^{x}\frac{\log x}{\sqrt{1+x^2}}\,dx=\frac{1}{2}\operatorname{Li}_2((\sqrt{1+x^2}-x)^2)+\frac{1}{2}\log^2(\frac{\sqrt{1+x^2}+x}{2})\)
\(\int_{0}^{x}\frac{\log (1+x^2)}{\sqrt{1-x}}\,dx=\frac{1}{4}\operatorname{Li}_2(-x)+\frac{1}{2}\operatorname{Li}_2(\frac{2x}{1+x^2})-\operatorname{Li}_2(x)+\frac{1}{4}\log^2(1+x^2)-\log(1-x)\log(1+x^2)\)
\(\int_{0}^{x}\frac{\log x\log(x-1)}{x}\,dx=\operatorname{Li}_3(x)-\log x\operatorname{Li}_2(x)\)
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판