"다이로그 함수와 부정적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 14개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
+
==오일러치환==
  
 
+
*  유리함수 <math>R(x,y)</math>와 <math>Q(x,y)</math>에 대하여 다음과 같은 적분에 대하여 [[오일러 치환]]을 사용할 수 있다:<math>\int R(x,\sqrt{ax^2+bx+c})\log Q(x,\sqrt{ax^2+bx+c})\,dx</math>
 +
* <math>c>0</math> 일때, <math>\sqrt{ax^2+bx+c}=xt+\sqrt{c}</math> 로 치환
 +
*  예:<math>I=\int \frac{1}{x\sqrt{1+x^2}}\log(x+\sqrt{1+x^2})\,dx</math>  :<math>\sqrt{1+x^2}=xt+1</math>:<math>x=\frac{2t}{1-t^2}</math>:<math>I=\int\frac{1}{t}\{\log(1+t)-\log(1-t)\}\,dt</math>:<math>=\operatorname{Li}_{2}(\frac{\sqrt{1+x^2}-1}{x})-\operatorname{Li}_{2}(1-\frac{\sqrt{1+x^2}}{x})</math>
 +
 
 +
 +
 
 +
 +
 
 +
==여러가지 부정적분==
 +
 
 +
  
 
<math>\alpha\neq\gamma</math>인 경우
 
<math>\alpha\neq\gamma</math>인 경우
13번째 줄: 23번째 줄:
 
<math>\int\frac{\log(\alpha+t)}{\gamma+t}\,dt=\log(\alpha-\gamma)\log(\frac{\gamma+t}{\gamma})-\operatorname{Li}_{2}(\frac{\gamma+t}{\gamma-\alpha})+C</math>
 
<math>\int\frac{\log(\alpha+t)}{\gamma+t}\,dt=\log(\alpha-\gamma)\log(\frac{\gamma+t}{\gamma})-\operatorname{Li}_{2}(\frac{\gamma+t}{\gamma-\alpha})+C</math>
  
 
+
 +
 
 +
<math>\int\frac{\log(\gamma+t)}{\gamma+t}\,dt=\frac{1}{2}\log^2(\gamma+t)+C</math>
 +
 
 +
<math>\int_{0}^{x}\frac{\log x}{\sqrt{1+x^2}}\,dx=\frac{1}{2}\operatorname{Li}_2((\sqrt{1+x^2}-x)^2)+\frac{1}{2}\log^2(\frac{\sqrt{1+x^2}+x}{2})</math>
  
 
+
<math>\int_{0}^{x}\frac{\log (1+x^2)}{\sqrt{1-x}}\,dx=\frac{1}{4}\operatorname{Li}_2(-x)+\frac{1}{2}\operatorname{Li}_2(\frac{2x}{1+x^2})-\operatorname{Li}_2(x)+\frac{1}{4}\log^2(1+x^2)-\log(1-x)\log(1+x^2)</math>
  
 
+
<math>\int_{0}^{x}\frac{\log x\log(x-1)}{x}\,dx=\operatorname{Li}_3(x)-\log x\operatorname{Li}_2(x)</math>
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
+
  
 
 
  
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
+
==역사==
  
 
+
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
*  
+
*
 +
 
 +
  
 
+
  
 
+
==메모==
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
+
  
 
+
  
 
+
==관련된 항목들==
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
+
* [[적분의 주제들]]
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
+
==수학용어번역==
  
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
+
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
* 발음사전 http://www.forvo.com/search/
+
* 발음사전 http://www.forvo.com/search/
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
+
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
75번째 줄: 88번째 줄:
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
 
+
[[분류:다이로그]]
 
+
[[분류:적분]]
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
 
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
 
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2020년 11월 16일 (월) 06:32 기준 최신판

개요

오일러치환

  • 유리함수 \(R(x,y)\)와 \(Q(x,y)\)에 대하여 다음과 같은 적분에 대하여 오일러 치환을 사용할 수 있다\[\int R(x,\sqrt{ax^2+bx+c})\log Q(x,\sqrt{ax^2+bx+c})\,dx\]
  • \(c>0\) 일때, \(\sqrt{ax^2+bx+c}=xt+\sqrt{c}\) 로 치환
  • 예\[I=\int \frac{1}{x\sqrt{1+x^2}}\log(x+\sqrt{1+x^2})\,dx\] \[\sqrt{1+x^2}=xt+1\]\[x=\frac{2t}{1-t^2}\]\[I=\int\frac{1}{t}\{\log(1+t)-\log(1-t)\}\,dt\]\[=\operatorname{Li}_{2}(\frac{\sqrt{1+x^2}-1}{x})-\operatorname{Li}_{2}(1-\frac{\sqrt{1+x^2}}{x})\]



여러가지 부정적분

\(\alpha\neq\gamma\)인 경우

\(\int\frac{\log(\alpha+t)}{\gamma+t}\,dt=\log(\alpha-\gamma)\log(\frac{\gamma+t}{\gamma})-\operatorname{Li}_{2}(\frac{\gamma+t}{\gamma-\alpha})+C\)


\(\int\frac{\log(\gamma+t)}{\gamma+t}\,dt=\frac{1}{2}\log^2(\gamma+t)+C\)

\(\int_{0}^{x}\frac{\log x}{\sqrt{1+x^2}}\,dx=\frac{1}{2}\operatorname{Li}_2((\sqrt{1+x^2}-x)^2)+\frac{1}{2}\log^2(\frac{\sqrt{1+x^2}+x}{2})\)

\(\int_{0}^{x}\frac{\log (1+x^2)}{\sqrt{1-x}}\,dx=\frac{1}{4}\operatorname{Li}_2(-x)+\frac{1}{2}\operatorname{Li}_2(\frac{2x}{1+x^2})-\operatorname{Li}_2(x)+\frac{1}{4}\log^2(1+x^2)-\log(1-x)\log(1+x^2)\)

\(\int_{0}^{x}\frac{\log x\log(x-1)}{x}\,dx=\operatorname{Li}_3(x)-\log x\operatorname{Li}_2(x)\)






역사



메모

관련된 항목들



수학용어번역



사전 형태의 자료