"두자연수가 서로소일 확률과 리만제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 7개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
  
 
+
  
 
+
*  두 자연수를 랜덤하게 뽑았을 때, 둘이 서로소일 확률
 +
*  답은 리만제타함수의 값 <math>\zeta(2)</math> 와 관련있음.
  
 
+
  
<h5>개요</h5>
+
  
 
+
두 자연수가 소수 p를 공약수로 가질 확률은 <math>\frac{1}{p^2}</math>가 된다.
 
 
*  두 자연수를 랜덤하게 뽑았을 때, 둘이 서로소일 확률<br>
 
*  답은 리만제타함수의 값 <math>\zeta(2)</math> 와 관련있음.<br>
 
 
 
 
 
 
 
 
 
 
 
두 자연수가 소수 p를 공약수로 가질 확률은 <math>\frac{1}{p^2}</math>가 된다.
 
  
 
따라서 두 자연수가 서로소일 확률은, 모든 소수 p에 대하여 p를 공약수로 갖지 않을 확률을 곱한 것이 된다. 즉,
 
따라서 두 자연수가 서로소일 확률은, 모든 소수 p에 대하여 p를 공약수로 갖지 않을 확률을 곱한 것이 된다. 즉,
36번째 줄: 28번째 줄:
 
두 자연수를 랜덤하게 뽑았을 때,둘이 서로소일 확률은
 
두 자연수를 랜덤하게 뽑았을 때,둘이 서로소일 확률은
  
<math>\frac{6}{\pi^2}\approx0.6079271\cdots</math><br> 이 문제 어디에 도대체 원이 숨어있단 말인가?
+
<math>\frac{6}{\pi^2}\approx0.6079271\cdots</math> 이 문제 어디에 도대체 원이 숨어있단 말인가?
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
+
==관련된 항목들==
  
* [[패리 수열(Farey series)|Farey series]]<br>
+
* [[패리 수열(Farey series)|Farey series]]
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]<br>
+
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
  
 
+
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
+
==블로그==
  
* [http://bomber0.byus.net/index.php/2008/07/28/698 오늘의 퀴즈 : Farey series의 크기]<br>
+
* [http://bomber0.byus.net/index.php/2008/07/28/698 오늘의 퀴즈 : Farey series의 크기]
 
** 피타고라스의 창, 2008-7-28
 
** 피타고라스의 창, 2008-7-28
 +
[[분류:원주율]]
 +
[[분류:리만 제타 함수]]

2020년 12월 28일 (월) 02:13 기준 최신판

개요

  • 두 자연수를 랜덤하게 뽑았을 때, 둘이 서로소일 확률
  • 답은 리만제타함수의 값 \(\zeta(2)\) 와 관련있음.



두 자연수가 소수 p를 공약수로 가질 확률은 \(\frac{1}{p^2}\)가 된다.

따라서 두 자연수가 서로소일 확률은, 모든 소수 p에 대하여 p를 공약수로 갖지 않을 확률을 곱한 것이 된다. 즉,

\(\prod_{p\text{:prime}}1-\frac{1}{p^2}=\prod_{p\text{:prime}}1-p^{-2}\)

그런데 이 녀석, 지난 글에 등장한 공식과 좀 닮아있지 않은가?

\(\zeta(s)=\prod_{p\text{:prime}}\frac{1}{1-p^{-s}}\)

이를 활용하면,

\(\prod_{p\text{:prime}}1-\frac{1}{p^2}=\frac{1}{\zeta(2)}\)

그래서 답이 나왔다.

두 자연수를 랜덤하게 뽑았을 때,둘이 서로소일 확률은

\(\frac{6}{\pi^2}\approx0.6079271\cdots\) 이 문제 어디에 도대체 원이 숨어있단 말인가?



관련된 항목들




블로그