"미디의 정리(Midy's theorem)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
10번째 줄: 10번째 줄:
  
 
*  소수 p에 대하여, 분수 a/p  (<math>1\leq a \leq p-1</math>) 를 십진법 전개할 때 얻어지는 순환마디의 길이가 2n 이고, 순환마디가 <math>a_1a_2\cdots a_{n} a_{n+1}a_{n+2}\cdots a_{2n}</math> 라 하자.<br><math>1\leq i \leq n</math> 에 대하여, <math>a_{i} + a_{i+n}=9</math> 이 성립한다.<br> 또한 <math>a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n} = 99\cdots 99</math>(n개의 9) 가 성립한다.<br>
 
*  소수 p에 대하여, 분수 a/p  (<math>1\leq a \leq p-1</math>) 를 십진법 전개할 때 얻어지는 순환마디의 길이가 2n 이고, 순환마디가 <math>a_1a_2\cdots a_{n} a_{n+1}a_{n+2}\cdots a_{2n}</math> 라 하자.<br><math>1\leq i \leq n</math> 에 대하여, <math>a_{i} + a_{i+n}=9</math> 이 성립한다.<br> 또한 <math>a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n} = 99\cdots 99</math>(n개의 9) 가 성립한다.<br>
 +
*  
  
 
 
 
 

2011년 12월 4일 (일) 11:35 판

이 항목의 수학노트 원문주소

 

 

개요
  • 소수 p에 대하여, 분수 a/p  (\(1\leq a \leq p-1\)) 를 십진법 전개할 때 얻어지는 순환마디의 길이가 2n 이고, 순환마디가 \(a_1a_2\cdots a_{n} a_{n+1}a_{n+2}\cdots a_{2n}\) 라 하자.
    \(1\leq i \leq n\) 에 대하여, \(a_{i} + a_{i+n}=9\) 이 성립한다.
    또한 \(a_1a_2\cdots a_{n} + a_{n+1}a_{n+2}\cdots a_{2n} = 99\cdots 99\)(n개의 9) 가 성립한다.
  •  

 

 

예: 142857
  • p=7
  • 1/p = 0.142857142857...
  • 142 + 857=999

 

 

 

예 : 1176470588235294
  • p=17
  • 2/17 = 0.11764705882352941176470588235294...
  • 11764705 + 88235294 = 99999999

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문과 에세이

 

 

관련논문

 

 

관련도서

 

 

링크