"불가능성의 정리들"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>간단한 소개</h5>
 
<h5>간단한 소개</h5>
  
 
+
* 루트 2를 두 정수의 비로 표현할 수 없다는 것은 수학의 역사에서 처음으로 나타난 불가능성에 대한 정리.
 +
* 이 외에도 다음과 같은 중요한 불가능성의 정리들이 있음.
 +
* 5차이상의 방정식의 대수적 해법(즉 근의 공식)이 존재하지 않음.
 +
* 어떤 초등함수들의 부정적분은 초등함수들의 사칙연산과 합성으로 표현할 수 없음.
  
 
 
 
 
7번째 줄: 10번째 줄:
 
<h5>하위주제들</h5>
 
<h5>하위주제들</h5>
  
 
+
* Abel's impossibility theorem
 +
* [[부정적분의 초등함수 표현(Integration in finite terms)|Integration in finite terms]]
 +
* Newton on Abelian functions
  
 
 
 
 
13번째 줄: 18번째 줄:
 
<h5>관련된 학부 과목과 미리 알고 있으면 좋은 것들</h5>
 
<h5>관련된 학부 과목과 미리 알고 있으면 좋은 것들</h5>
  
 
+
* [[추상대수학]]<br>
 +
** 갈루아이론
  
 
 
 
 
42번째 줄: 48번째 줄:
  
 
<h5>참고할만한 자료</h5>
 
<h5>참고할만한 자료</h5>
 
* Abel's impossibility theorem
 
* [[부정적분의 초등함수 표현(Integration in finite terms)|Integration in finite terms]]
 
* Newton on Abelian functions
 

2008년 11월 7일 (금) 15:51 판

간단한 소개
  • 루트 2를 두 정수의 비로 표현할 수 없다는 것은 수학의 역사에서 처음으로 나타난 불가능성에 대한 정리.
  • 이 외에도 다음과 같은 중요한 불가능성의 정리들이 있음.
  • 5차이상의 방정식의 대수적 해법(즉 근의 공식)이 존재하지 않음.
  • 어떤 초등함수들의 부정적분은 초등함수들의 사칙연산과 합성으로 표현할 수 없음.

 

하위주제들

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

관련된 대학원 과목

 

 

관련된 다른 주제들

 

 

표준적인 도서 및 추천도서

 

 

위키링크

 

 

참고할만한 자료