"수식 표현 안내"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5>원문주소</h5>
 
  
* [[수식표현 안내]]
+
==HTML 수식표현[http://en.wikipedia.org/wiki/Wikipedia:Mathematical_symbols ]==
 
 
 
 
 
 
 
 
 
 
<h5>HTML 수식표현[http://en.wikipedia.org/wiki/Wikipedia:Mathematical_symbols ]</h5>
 
  
 
* [[HTML과 유니코드에서의 수식표현]]
 
* [[HTML과 유니코드에서의 수식표현]]
 
* [[MathJax]]
 
* [[MathJax]]
 
+
  
 
+
  
 
+
  
<h5>웹상에서의 LaTeX을 통한 수식표현</h5>
+
==웹상에서의 LaTeX을 통한 수식표현==
  
 
*  스프링노트<br>
 
*  스프링노트<br>
36번째 줄: 29번째 줄:
 
** http://geometry.tistory.com/58
 
** http://geometry.tistory.com/58
  
 
+
  
<h5>LaTeX 명령어 입문</h5>
+
==LaTeX 명령어 입문==
  
 
*  특정한 수식표현을 배우는 하나의 방법은 Wikipedia를 이용하는 것<br>
 
*  특정한 수식표현을 배우는 하나의 방법은 Wikipedia를 이용하는 것<br>
46번째 줄: 39번째 줄:
 
* http://en.wikibooks.org/wiki/LaTeX
 
* http://en.wikibooks.org/wiki/LaTeX
  
 
+
  
<h5>모르는 명령어 그림으로 알아내기</h5>
+
==모르는 명령어 그림으로 알아내기==
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
  
 
+
  
 
+
  
<h5>LaTeX으로 노트하기</h5>
+
==LaTeX으로 노트하기==
  
 
* [http://math.berkeley.edu/%7Eanton/index.php?m1=me&m2=TeXadvice Advice on realtime TeXing]
 
* [http://math.berkeley.edu/%7Eanton/index.php?m1=me&m2=TeXadvice Advice on realtime TeXing]
  
 
+
  
 
+
  
 
* 한글 TeX http://ajt.ktug.kr/2007/0102khlee.pdf
 
* 한글 TeX http://ajt.ktug.kr/2007/0102khlee.pdf
  
 
+
  
 
+
  
 
+
  
 
+
  
 
+
  
 
==== 하위페이지 ====
 
==== 하위페이지 ====
85번째 줄: 78번째 줄:
 
** [[화살표 모음]]<br>
 
** [[화살표 모음]]<br>
  
 
+
  
 
==LaTeX 명령예==
 
==LaTeX 명령예==
99번째 줄: 92번째 줄:
 
<math>\operatorname{Re} a > 0 </math>
 
<math>\operatorname{Re} a > 0 </math>
  
 
+
  
 
* <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
 
* <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
123번째 줄: 116번째 줄:
 
* <math>\large f^\prime(x)\ =        \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}</math>
 
* <math>\large f^\prime(x)\ =        \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}</math>
  
# \large f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
+
# \large f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
  
 
* <math>\Large A\ =\ \large\left(        \begin{array}{c.cccc}&1&2&\cdots&n\\        \hdash 1&a_{11}&a_{12}&\cdots&a_{1n}\\        2&a_{21}&a_{22}&\cdots&a_{2n}\\        \vdots&\vdots&\vdots&\ddots&\vdots\\        n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)</math>
 
* <math>\Large A\ =\ \large\left(        \begin{array}{c.cccc}&1&2&\cdots&n\\        \hdash 1&a_{11}&a_{12}&\cdots&a_{1n}\\        2&a_{21}&a_{22}&\cdots&a_{2n}\\        \vdots&\vdots&\vdots&\ddots&\vdots\\        n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)</math>
  
# \Large A\ =\ \large\left(         \begin{array}{c.cccc}&1&2&\cdots&n\\         \hdash 1&a_{11}&a_{12}&\cdots&a_{1n}\\         2&a_{21}&a_{22}&\cdots&a_{2n}\\         \vdots&\vdots&\vdots&\ddots&\vdots\\         n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
+
# \Large A\ =\ \large\left(         \begin{array}{c.cccc}&1&2&\cdots&n\\         \hdash 1&a_{11}&a_{12}&\cdots&a_{1n}\\         2&a_{21}&a_{22}&\cdots&a_{2n}\\         \vdots&\vdots&\vdots&\ddots&\vdots\\         n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
  
 
* <math>\LARGE\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.</math>
 
* <math>\LARGE\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.</math>
  
# \LARGE\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.
+
# \LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.
  
# \Large\left.\begin{eqnarray}    x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}
+
# \Large\left.\begin{eqnarray}   x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}
  
 
* <math>\int e^{-\frac{x^2}{2}} dx</math>
 
* <math>\int e^{-\frac{x^2}{2}} dx</math>
145번째 줄: 138번째 줄:
 
* <math>\Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}</math>
 
* <math>\Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}</math>
  
# \Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}
+
# \Large\begin{array}{rccclBCB}   &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\   \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\   &u&\longr[75]_\beta&v\end{array}
  
 
* <math>\Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}</math>
 
* <math>\Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}</math>
  
# \Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
+
# \Large\overbrace{a,...,a}^{\text{k a^,s}},   \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}   \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},   \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
  
*  
+
*
  
 
*  
 
*  

2012년 10월 22일 (월) 13:10 판

HTML 수식표현[1]




웹상에서의 LaTeX을 통한 수식표현


LaTeX 명령어 입문


모르는 명령어 그림으로 알아내기



LaTeX으로 노트하기








하위페이지


LaTeX 명령예

\(\chi(t)=\left(\frac{t}{p}\right)\)


\(\operatorname{Re} a > 0 \)


  • \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
  1. x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
  • \(e^{i \pi} +1 = 0\)
  1. e^{i\pi}+1=0
  • \(2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}\)
  1. 2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}
  • \(\frac{\sqrt{3}}{5}\)
  1. \frac{\sqrt{3}}{5}
  • \(720\div12=60\)
  1. 720\div12=60
  • \(\large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\)
  1. \large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
  • \(\Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash 1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)\)
  1. \Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash 1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
  • \(\LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.\)
  1. \LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.
  1. \Large\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}
  • \(\int e^{-\frac{x^2}{2}} dx\)
  1. \int%20e^{-\frac{x^2}{2}}%20dx

\(e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n\)

  1. e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n
  • \(\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}\)
  1. \Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}
  • \(\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}\)
  1. \Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
  1. \sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}
  1. \int_{a}^{b}f(x)dx=F(b)-F(a)
  1. \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}