"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
* http://en.wikipedia.org/wiki/Timeline_of_mathematics 참조
+
* [http://en.wikipedia.org/wiki/Timeline_of_mathematics 페르마의 마지막 정리] 참조
  
 
 
 
 
78번째 줄: 78번째 줄:
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
* [http://en.wikipedia.org/wiki/1832 1832] - Peter Dirichlet proves Fermat's Last Theorem for <em>n</em> = 14,
+
* [http://en.wikipedia.org/wiki/1832 1832] - Peter Dirichlet proves [[#|페르마의 마지막 정리]]
 
* [http://en.wikipedia.org/wiki/1835 1835] - Peter Dirichlet proves [http://en.wikipedia.org/wiki/Dirichlet%27s_theorem Dirichlet's theorem] about prime numbers in arithmetical progressions,
 
* [http://en.wikipedia.org/wiki/1835 1835] - Peter Dirichlet proves [http://en.wikipedia.org/wiki/Dirichlet%27s_theorem Dirichlet's theorem] about prime numbers in arithmetical progressions,
* [http://en.wikipedia.org/wiki/1837 1837] - [http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel] proves that doubling the cube and [http://en.wikipedia.org/wiki/Trisecting_the_angle trisecting the angle] are impossible with only a compass and straightedge, as well as the full completion of the problem of constructability of regular polygons
+
* [http://en.wikipedia.org/wiki/1837 1837] - 피에르 완첼([http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel])이 [[#|두배의 부피를 갖는 정육면체(The duplication of the cube)]]과 [[#|각의 3등분(The trisection of an angle)]] 문제가 자와 컴파스로 해결불가능임을 증명, as well as the full completion of the problem of constructability of regular polygons
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
90번째 줄: 90번째 줄:
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Bernhard_Riemann Bernhard Riemann] introduces [http://en.wikipedia.org/wiki/Riemannian_geometry Riemannian geometry],
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Bernhard_Riemann Bernhard Riemann] introduces [http://en.wikipedia.org/wiki/Riemannian_geometry Riemannian geometry],
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
* [http://en.wikipedia.org/wiki/1858 1858] - [http://en.wikipedia.org/wiki/August_Ferdinand_M%C3%B6bius August Ferdinand Möbius] invents the [http://en.wikipedia.org/wiki/M%C3%B6bius_strip Möbius strip],
+
* 1858 - 뫼비우스가 [[#|뫼비우스의 띠]]를 발견
 
* [http://en.wikipedia.org/wiki/1859 1859] - Bernhard Riemann formulates the [http://en.wikipedia.org/wiki/Riemann_hypothesis Riemann hypothesis] which has strong implications about the distribution of [http://en.wikipedia.org/wiki/Prime_number prime numbers],
 
* [http://en.wikipedia.org/wiki/1859 1859] - Bernhard Riemann formulates the [http://en.wikipedia.org/wiki/Riemann_hypothesis Riemann hypothesis] which has strong implications about the distribution of [http://en.wikipedia.org/wiki/Prime_number prime numbers],
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
96번째 줄: 96번째 줄:
 
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius] presents his method for finding series solutions to linear differential equations with [http://en.wikipedia.org/wiki/Regular_singular_point regular singular points],
 
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius] presents his method for finding series solutions to linear differential equations with [http://en.wikipedia.org/wiki/Regular_singular_point regular singular points],
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
* [http://en.wikipedia.org/wiki/1878 1878] - Charles Hermite solves the general quintic equation by means of elliptic and modular functions
+
* [http://en.wikipedia.org/wiki/1878 1878] - Charles Hermite solves the general quintic equation by means of elliptic and modular functions<br>
* [http://en.wikipedia.org/wiki/1882 1882] - 린데만이 [[파이 π는 초월수이다|파이는 초월수]]임을 증명하고 따라서 원이 자와 컴파스로 작도 불가능함을 증명
+
** [[#|오차방정식과 정이십면체]]
* [http://en.wikipedia.org/wiki/1882 1882] - 펠릭스 [http://en.wikipedia.org/wiki/Klein_bottle Klein bottle],
+
* 1882 - 린데만이 [[파이 π는 초월수이다|파이는 초월수]]임을 증명하고 따라서 원이 자와 컴파스로 작도 불가능함을 증명
 +
* 1882 - 펠릭스 클라인이 [[#|클라인씨의 병]]을 발견
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Diederik_Korteweg Diederik Korteweg] and [http://en.wikipedia.org/wiki/Gustav_de_Vries Gustav de Vries] derive the [http://en.wikipedia.org/wiki/KdV_equation KdV equation] to describe the development of long solitary water waves in a canal of rectangular cross section,
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Diederik_Korteweg Diederik Korteweg] and [http://en.wikipedia.org/wiki/Gustav_de_Vries Gustav de Vries] derive the [http://en.wikipedia.org/wiki/KdV_equation KdV equation] to describe the development of long solitary water waves in a canal of rectangular cross section,
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] publishes a book about set theory containing the arithmetic of infinite [http://en.wikipedia.org/wiki/Cardinal_number cardinal numbers] and the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis],
 
* [http://en.wikipedia.org/wiki/1895 1895] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] publishes a book about set theory containing the arithmetic of infinite [http://en.wikipedia.org/wiki/Cardinal_number cardinal numbers] and the [http://en.wikipedia.org/wiki/Continuum_hypothesis continuum hypothesis],

2009년 6월 27일 (토) 11:48 판

 

17세기


18세기


19세기


20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상