"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
34번째 줄: 34번째 줄:
 
=== 18세기 ===
 
=== 18세기 ===
  
* [http://en.wikipedia.org/wiki/1706 1706] - [http://en.wikipedia.org/wiki/John_Machin John Machin] develops a quickly converging inverse-tangent series for π and computes π to 100 decimal places,
+
* [http://en.wikipedia.org/wiki/1706 1706] - 마친, [[#|마친(Machin)의 공식]]을 활용하여 파이값 100자리까지 계산
 
* [http://en.wikipedia.org/wiki/1712 1712] - [http://en.wikipedia.org/wiki/Brook_Taylor Brook Taylor] develops [http://en.wikipedia.org/wiki/Taylor_series Taylor series],
 
* [http://en.wikipedia.org/wiki/1712 1712] - [http://en.wikipedia.org/wiki/Brook_Taylor Brook Taylor] develops [http://en.wikipedia.org/wiki/Taylor_series Taylor series],
* [http://en.wikipedia.org/wiki/1722 1722] - [http://en.wikipedia.org/wiki/Abraham_de_Moivre Abraham de Moivre] states [http://en.wikipedia.org/wiki/De_Moivre%27s_formula de Moivre's formula] connecting [http://en.wikipedia.org/wiki/Trigonometric_function trigonometric functions] and [http://en.wikipedia.org/wiki/Complex_number complex numbers],
+
* [http://en.wikipedia.org/wiki/1722 1722] - [[#|드 무아브르의 정리, 복소수와 정다각형]] 발견
 
* [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em style="">Annuities on Lives</em>,
 
* [http://en.wikipedia.org/wiki/1724 1724] - Abraham De Moivre studies mortality statistics and the foundation of the theory of annuities in <em style="">Annuities on Lives</em>,
 
* [http://en.wikipedia.org/wiki/1730 1730] - [http://en.wikipedia.org/wiki/James_Stirling_%28mathematician%29 James Stirling] publishes <em style="">The Differential Method</em>,
 
* [http://en.wikipedia.org/wiki/1730 1730] - [http://en.wikipedia.org/wiki/James_Stirling_%28mathematician%29 James Stirling] publishes <em style="">The Differential Method</em>,
 
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Giovanni_Gerolamo_Saccheri Giovanni Gerolamo Saccheri] studies what geometry would be like if [http://en.wikipedia.org/wiki/Parallel_postulate Euclid's fifth postulate] were false,
 
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Giovanni_Gerolamo_Saccheri Giovanni Gerolamo Saccheri] studies what geometry would be like if [http://en.wikipedia.org/wiki/Parallel_postulate Euclid's fifth postulate] were false,
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Abraham_de_Moivre Abraham de Moivre] introduces the [http://en.wikipedia.org/wiki/Normal_distribution normal distribution] to approximate the [http://en.wikipedia.org/wiki/Binomial_distribution binomial distribution] in probability,
+
* [http://en.wikipedia.org/wiki/1733 1733] - [http://en.wikipedia.org/wiki/Abraham_de_Moivre Abraham de Moivre] introduces the [http://en.wikipedia.org/wiki/Normal_distribution normal distribution] to approximate the [http://en.wikipedia.org/wiki/Binomial_distribution binomial distribution] in probability, [[#|정규분포와 중심극한정리]] 참조
 
* [http://en.wikipedia.org/wiki/1734 1734] - [http://en.wikipedia.org/wiki/Leonhard_Euler Leonhard Euler] introduces the [http://en.wikipedia.org/w/index.php?title=Integrating_factor_technique&action=edit&redlink=1 integrating factor technique] for solving first-order ordinary [http://en.wikipedia.org/wiki/Differential_equation differential equations],
 
* [http://en.wikipedia.org/wiki/1734 1734] - [http://en.wikipedia.org/wiki/Leonhard_Euler Leonhard Euler] introduces the [http://en.wikipedia.org/w/index.php?title=Integrating_factor_technique&action=edit&redlink=1 integrating factor technique] for solving first-order ordinary [http://en.wikipedia.org/wiki/Differential_equation differential equations],
 
* [http://en.wikipedia.org/wiki/1735 1735] - 오일러 바젤 문제를 해결함 [[#|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
 
* [http://en.wikipedia.org/wiki/1735 1735] - 오일러 바젤 문제를 해결함 [[#|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
51번째 줄: 51번째 줄:
 
* [http://en.wikipedia.org/wiki/1789 1789] - [http://en.wikipedia.org/wiki/Jurij_Vega Jurij Vega] improves Machin's formula and computes π to 140 decimal places,
 
* [http://en.wikipedia.org/wiki/1789 1789] - [http://en.wikipedia.org/wiki/Jurij_Vega Jurij Vega] improves Machin's formula and computes π to 140 decimal places,
 
* [http://en.wikipedia.org/wiki/1794 1794] - Jurij Vega publishes <em style="">Thesaurus Logarithmorum Completus</em>,
 
* [http://en.wikipedia.org/wiki/1794 1794] - Jurij Vega publishes <em style="">Thesaurus Logarithmorum Completus</em>,
* [http://en.wikipedia.org/wiki/1796 1796] - [http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss Carl Friedrich Gauss] proves that the [http://en.wikipedia.org/wiki/Heptadecagon regular 17-gon] can be constructed using only a [http://en.wikipedia.org/wiki/Compass_and_straightedge compass and straightedge]
+
* [http://en.wikipedia.org/wiki/1796 1796] - 가우스가 [[#|정17각형의 작도]] 문제를 해결함.
 
* [http://en.wikipedia.org/wiki/1796 1796] - [http://en.wikipedia.org/wiki/Adrien-Marie_Legendre Adrien-Marie Legendre] conjectures the [http://en.wikipedia.org/wiki/Prime_number_theorem prime number theorem],
 
* [http://en.wikipedia.org/wiki/1796 1796] - [http://en.wikipedia.org/wiki/Adrien-Marie_Legendre Adrien-Marie Legendre] conjectures the [http://en.wikipedia.org/wiki/Prime_number_theorem prime number theorem],
 
* [http://en.wikipedia.org/wiki/1797 1797] - [http://en.wikipedia.org/wiki/Caspar_Wessel Caspar Wessel] associates vectors with [http://en.wikipedia.org/wiki/Complex_number complex numbers] and studies complex number operations in geometrical terms,
 
* [http://en.wikipedia.org/wiki/1797 1797] - [http://en.wikipedia.org/wiki/Caspar_Wessel Caspar Wessel] associates vectors with [http://en.wikipedia.org/wiki/Complex_number complex numbers] and studies complex number operations in geometrical terms,
* [http://en.wikipedia.org/wiki/1799 1799] - Carl Friedrich Gauss proves the [http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra fundamental theorem of algebra] (every polynomial equation has a solution among the complex numbers),
+
* [http://en.wikipedia.org/wiki/1799 1799] - Carl Friedrich Gauss proves the [http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra fundamental theorem of algebra] (every polynomial equation has a solution among the complex numbers),<br>  <br>
 
* [http://en.wikipedia.org/wiki/1799 1799] - [http://en.wikipedia.org/wiki/Paolo_Ruffini Paolo Ruffini] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula,
 
* [http://en.wikipedia.org/wiki/1799 1799] - [http://en.wikipedia.org/wiki/Paolo_Ruffini Paolo Ruffini] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula,
  

2009년 7월 2일 (목) 04:08 판

 

17세기


18세기


19세기


20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상