"슈바르츠-크리스토펠 사상(Schwarz-Christoffel mappings)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
17번째 줄: | 17번째 줄: | ||
<h5>예</h5> | <h5>예</h5> | ||
− | * 복소해석학의 리만 사상 정리 에 의하면, 아래 그림과 같은 단위원과 별모양(pentagram) 사이에는 전단사 복소해석함수가 존재. | + | * 복소해석학의 리만 사상 정리 [[리만 사상 정리 Riemann mapping theorem and the uniformization theorem|리만 사상 정리 Riemann mapping theorem]] 에 의하면, 아래 그림과 같은 단위원과 별모양(pentagram) 사이에는 전단사 복소해석함수가 존재. |
55번째 줄: | 55번째 줄: | ||
* [[초기하 미분방정식(Hypergeometric differential equations)]] | * [[초기하 미분방정식(Hypergeometric differential equations)]] | ||
* [[헤르만 슈바르츠 (1843-1921)]] | * [[헤르만 슈바르츠 (1843-1921)]] | ||
+ | * [[슈바르츠 미분(Schwarzian derivative)]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>매스매티카 파일 및 계산 리소스</h5> | ||
+ | |||
+ | * | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * http://functions.wolfram.com/ | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation] | ||
+ | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>사전 형태의 자료</h5> | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * [http://www.encyclopediaofmath.org/index.php/Main_Page Encyclopaedia of Mathematics] | ||
+ | * [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions] | ||
+ | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
+ | |||
+ | |||
2012년 7월 29일 (일) 12:58 판
이 항목의 스프링노트 원문주소
개요
예
- 복소해석학의 리만 사상 정리 리만 사상 정리 Riemann mapping theorem 에 의하면, 아래 그림과 같은 단위원과 별모양(pentagram) 사이에는 전단사 복소해석함수가 존재.
- 슈바르츠-크리스토펠 사상 (Schwarz-Christoffel mappings) 은 이러한 사상을 다음과 같이 구체적으로 표현할 수 있게 해주는 공식.
\(f(z)=\int_0^z\frac{(1-z^5)^{\frac{2}{5}}}{(1+z^5)^{\frac{4}{5}}}dz\)
국소적인 이해
- 우선 \(z^{\lambda}\) 형태의 복소함수에 대해서 이해할 필요가 있음
- \(\lambda > 0\) 인 경우에 대해서 먼저 생각해보자
\(z^{\lambda}=e^{\lambda \ln z}= e^{\lambda (\ln |z|+i\arg z)}} =\exp(\ln |z|^{\lambda}+\lambda i \arg z)\) - 이 함수가 복소상반평면을 어떻게 변화시키는지 알아보기 위해 \(\arg z\)의 브랜치를 하나 고정하자
- \(z\) 가 실수라고 하자.
- \(z>0\) 이면 \(\arg z =0\)
- \(z<0\) 이면 \(\arg z =\pi\)
- 상반평면이 \(z^{\lambda}\) 에 의해 각도가 \(\lambda \pi\)인 두 직선으로 쌓인 영역으로 변화
- \(\lambda < 0\) 인 경우
등각사상으로서의 타원적분
- 타원적분
\(f(z)=\int_0^z\frac{dz}{\sqrt{(z+1)z(z-1)}}\) - 이러한 타원적분으로 주어진 함수가 등각사상으로서 어떤 성질을 알기 위해 국소적으로 보자면,
\(z=-1\) 근방에서 \(f(z) \approx (z+1)^{\frac{1}{2}}\)
\(z=0\) 근방에서 \(f(z) \approx z^{\frac{1}{2}}\)
\(z=1\) 근방에서 \(f(z) \approx (z-1)^{\frac{1}{2}}\)
관련된 항목들
- 초기하 미분방정식(Hypergeometric differential equations)
- 헤르만 슈바르츠 (1843-1921)
- 슈바르츠 미분(Schwarzian derivative)
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
관련도서
- Conformal Mapping
- Zeev Nehari, Dover Publications, 1982-1
- Schwarz_functions_and_hypergeometric_differential_equation.pdf