"슈바르츠-크리스토펠 사상(Schwarz-Christoffel mappings)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
17번째 줄: 17번째 줄:
 
<h5>예</h5>
 
<h5>예</h5>
  
* 복소해석학의 리만 사상 정리 에 의하면, 아래 그림과 같은 단위원과 별모양(pentagram) 사이에는 전단사 복소해석함수가 존재.
+
* 복소해석학의 리만 사상 정리 [[리만 사상 정리 Riemann mapping theorem and the uniformization theorem|리만 사상 정리 Riemann mapping theorem]] 에 의하면, 아래 그림과 같은 단위원과 별모양(pentagram) 사이에는 전단사 복소해석함수가 존재.
  
  
55번째 줄: 55번째 줄:
 
* [[초기하 미분방정식(Hypergeometric differential equations)]]
 
* [[초기하 미분방정식(Hypergeometric differential equations)]]
 
* [[헤르만 슈바르츠 (1843-1921)]]
 
* [[헤르만 슈바르츠 (1843-1921)]]
 +
* [[슈바르츠 미분(Schwarzian derivative)]]
 +
 +
 
 +
 +
 
 +
 +
<h5>매스매티카 파일 및 계산 리소스</h5>
 +
 +
*  
 +
* http://www.wolframalpha.com/input/?i=
 +
* http://functions.wolfram.com/
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 +
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 +
 +
 
 +
 +
 
 +
 +
<h5>사전 형태의 자료</h5>
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
* [http://www.encyclopediaofmath.org/index.php/Main_Page Encyclopaedia of Mathematics]
 +
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 +
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 +
 +
 
  
 
 
 
 

2012년 7월 29일 (일) 12:58 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 


  • 슈바르츠-크리스토펠 사상 (Schwarz-Christoffel mappings) 은 이러한 사상을 다음과 같이 구체적으로 표현할 수 있게 해주는 공식.

\(f(z)=\int_0^z\frac{(1-z^5)^{\frac{2}{5}}}{(1+z^5)^{\frac{4}{5}}}dz\)

 

국소적인 이해
  • 우선 \(z^{\lambda}\) 형태의 복소함수에 대해서 이해할 필요가 있음
  • \(\lambda > 0\) 인 경우에 대해서 먼저 생각해보자
    \(z^{\lambda}=e^{\lambda \ln z}= e^{\lambda (\ln |z|+i\arg z)}} =\exp(\ln |z|^{\lambda}+\lambda i \arg z)\)
  • 이 함수가 복소상반평면을 어떻게 변화시키는지 알아보기 위해 \(\arg z\)의 브랜치를 하나 고정하자
  • \(z\) 가 실수라고 하자.
    • \(z>0\)  이면 \(\arg z =0\)
    • \(z<0\)  이면 \(\arg z =\pi\)
  • 상반평면이 \(z^{\lambda}\) 에 의해 각도가 \(\lambda \pi\)인 두 직선으로 쌓인 영역으로 변화
  • \(\lambda < 0\) 인 경우

 

 

등각사상으로서의 타원적분
  • 타원적분
    \(f(z)=\int_0^z\frac{dz}{\sqrt{(z+1)z(z-1)}}\)
  • 이러한 타원적분으로 주어진 함수가 등각사상으로서 어떤 성질을 알기 위해 국소적으로 보자면,
    \(z=-1\) 근방에서 \(f(z) \approx (z+1)^{\frac{1}{2}}\)
    \(z=0\) 근방에서 \(f(z) \approx z^{\frac{1}{2}}\)
    \(z=1\) 근방에서 \(f(z) \approx (z-1)^{\frac{1}{2}}\)

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

 

 

관련도서