"여인수(cofactor)와 행렬의 adjugate"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 여인수(cofactor)와 행렬의 adjoint로 바꾸었습니다.)
9번째 줄: 9번째 줄:
 
<h5>개요</h5>
 
<h5>개요</h5>
  
* 정방행렬 <math>A=(a_{ij})</math> 에서 i행과 j열을 지워얻어진 정방행렬의 행렬식을  (ij)-cofactor 라 한다
+
* 정방행렬 <math>A=(a_{ij})</math> 에서 i행과 j열을 지워얻어진 정방행렬의 행렬식을 <math>b_{ij}</math>라 하자. <math>c_{ij}=(-1)^{i+j}b_{ij}</math> 를 (i,j)-cofactor 라 한다
* cofactor
+
* cofactor 들로 주어진 행렬 <math>(c_{ij})</math> 의 transpose 를 행렬 A 의 adjoint (또는 adjugate) 이라 한다
 +
 
 +
 
  
 
 
 
 
33번째 줄: 35번째 줄:
  
 
<math>\left( \begin{array}{ccccc}  2 & -1 & 0 & 0 & 0 \\  -1 & 2 & -1 & 0 & 0 \\  0 & -1 & 2 & -1 & 0 \\  0 & 0 & -1 & 2 & -1 \\  0 & 0 & 0 & -1 & 1 \end{array} \right)</math> 의 adjoint
 
<math>\left( \begin{array}{ccccc}  2 & -1 & 0 & 0 & 0 \\  -1 & 2 & -1 & 0 & 0 \\  0 & -1 & 2 & -1 & 0 \\  0 & 0 & -1 & 2 & -1 \\  0 & 0 & 0 & -1 & 1 \end{array} \right)</math> 의 adjoint
 
 
 
  
 
<math>\left( \begin{array}{ccccc}  1 & 1 & 1 & 1 & 1 \\  1 & 2 & 2 & 2 & 2 \\  1 & 2 & 3 & 3 & 3 \\  1 & 2 & 3 & 4 & 4 \\  1 & 2 & 3 & 4 & 5 \end{array} \right)</math>
 
<math>\left( \begin{array}{ccccc}  1 & 1 & 1 & 1 & 1 \\  1 & 2 & 2 & 2 & 2 \\  1 & 2 & 3 & 3 & 3 \\  1 & 2 & 3 & 4 & 4 \\  1 & 2 & 3 & 4 & 5 \end{array} \right)</math>
91번째 줄: 91번째 줄:
 
* 발음사전 http://www.forvo.com/search/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
+
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=cofactor
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=adjoint
 +
** cofactor - 여인수
 +
** adjoint matrix - 딸림행렬, 수반행렬
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]

2012년 2월 6일 (월) 04:43 판

이 항목의 수학노트 원문주소

 

 

개요
  • 정방행렬 \(A=(a_{ij})\) 에서 i행과 j열을 지워얻어진 정방행렬의 행렬식을 \(b_{ij}\)라 하자. \(c_{ij}=(-1)^{i+j}b_{ij}\) 를 (i,j)-cofactor 라 한다
  • cofactor 들로 주어진 행렬 \((c_{ij})\) 의 transpose 를 행렬 A 의 adjoint (또는 adjugate) 이라 한다

 

 

\(\left( \begin{array}{cc} a & b \\ c & d \end{array} \right)\)

\(\left( \begin{array}{cc} d & -b \\ -c & a \end{array} \right)\)

 

\(\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\) 의 adjoint

\(\left( \begin{array}{ccc} -a_{2,3} a_{3,2}+a_{2,2} a_{3,3} & a_{1,3} a_{3,2}-a_{1,2} a_{3,3} & -a_{1,3} a_{2,2}+a_{1,2} a_{2,3} \\ a_{2,3} a_{3,1}-a_{2,1} a_{3,3} & -a_{1,3} a_{3,1}+a_{1,1} a_{3,3} & a_{1,3} a_{2,1}-a_{1,1} a_{2,3} \\ -a_{2,2} a_{3,1}+a_{2,1} a_{3,2} & a_{1,2} a_{3,1}-a_{1,1} a_{3,2} & -a_{1,2} a_{2,1}+a_{1,1} a_{2,2} \end{array} \right)\)

 

 

 

\(\left( \begin{array}{ccccc} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right)\) 의 adjoint

\(\left( \begin{array}{ccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{array} \right)\)

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서