"오일러-가우스 초기하함수2F1"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
124번째 줄: 124번째 줄:
 
* [http://people.math.jussieu.fr/~miw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.]<br>
 
* [http://people.math.jussieu.fr/~miw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.]<br>
 
**  M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.<br>
 
**  M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.<br>
* [http://www.jstor.org/stable/2975319 On the Kummer Solutions of the Hypergeometric Equation]<br>
+
*  <br> Exceptional sets of hypergeometric series<br> Natália Archinard<br>
** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543
 
  
* [http://dx.doi.org/10.1017/S0305004102005923 Special values of the hypergeometric series III]
+
* [http://dx.doi.org/10.1017/S0305004102005923 Special values of the hypergeometric series III]<br>
* Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
+
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2002), 133 : 213-222
  
* [http://dx.doi.org/10.1017/S0305004101005254 Special values of the hypergeometric series II]
+
* [http://dx.doi.org/10.1017/S0305004101005254 Special values of the hypergeometric series II]<br>
* Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
+
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
 
*  Special values of the hypergeometric series<br>
 
*  Special values of the hypergeometric series<br>
 
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991)  volume: 109  issue: 2  page: 257
 
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991)  volume: 109  issue: 2  page: 257
 +
*
 +
**  
 
* [http://dx.doi.org/10.1007/BF01393999 Werte hypergeometrischer funktionen]<br>
 
* [http://dx.doi.org/10.1007/BF01393999 Werte hypergeometrischer funktionen]<br>
 
** Jürgen Wolfart, Inventiones Mathematicae Volume 92, Number 1 / 1988년 2월
 
** Jürgen Wolfart, Inventiones Mathematicae Volume 92, Number 1 / 1988년 2월

2009년 12월 5일 (토) 15:20 판

이 항목의 스프링노트 원문주소

 

 

 

개요
  • 정의
    \(\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1\)
  • 적분표현
    \(\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt\)

 

 

초기하급수로 표현되는 함수의 예

 

  • 타원적분[[타원적분|]]\(K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\)
    \(E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)\)

 

 

 

피카드-Fuchs 미분방정식

 

 

타원적분과 초기하급수

 

(증명)

\(\int_0^{\frac{\pi}{2}}\sin^{2n}\theta{d\theta}=\frac{\pi}{2}\frac{(\frac{1}{2})_n}{(1)_n}\) (감마함수) 이므로

\(K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\)

 

 

special values

\(\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\)

\(\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문
  • Special values of the hypergeometric series II
    • Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
  • Special values of the hypergeometric series
    • Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991)  volume: 109  issue: 2  page: 257
    •  
  • Werte hypergeometrischer funktionen
    • Jürgen Wolfart, Inventiones Mathematicae Volume 92, Number 1 / 1988년 2월

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그