"오일러-가우스 초기하함수2F1"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
36번째 줄: 36번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">contiguous 관계</h5>
 
<h5 style="margin: 0px; line-height: 2em;">contiguous 관계</h5>
  
*  두 초기하급수가 있을 때, 세 파라미터 중 두 개가 같고, 하나가 1만큼 다른 경우 contiguous라 함<br><math>_2F_1(a,b;c;z)</math>와 <math>_2F_1(a\pm1,b;c;z)</math><br><math>_2F_1(a,b;c;z)</math>와 <math>_2F_1(a1,b;c\pm1;z)</math><br>  <br>
+
*  두 초기하급수가 있을 때, 세 파라미터가 정수만큼 다른 경우 contiguous라 함<br>
 +
*  예<br><math>_2F_1(a,b;c;z)</math>와 <math>_2F_1(a\pm1,b;c;z)</math><br><math>_2F_1(a,b;c;z)</math>와 <math>_2F_1(a1,b;c\pm1;z)</math><br>  <br>  <br>
  
 
 
 
 

2009년 12월 7일 (월) 08:53 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 초기하급수로서의 정의
    \(\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1\)
  • 적분표현
    \(\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt\)
  • 초기하급수의 해석적확장을 통해 얻어진 함수를 초기하함수라 함

 

 

초기하급수로 표현되는 함수의 예
  • 타원적분
    \(K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\)
    \(E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)\)

 

 

오일러의 항등식

\(_2F_1 (a,b;c;z) = (1-z)^{c-a-b}{}_2F_1 (c-a, c-b;c ; z)\)

\(_2F_1 (a,b;c;z) = (1-z)^{-a} {}_2F_1 (a, c-b;c ; \frac{z}{z-1})\)

 

contiguous 관계
  • 두 초기하급수가 있을 때, 세 파라미터가 정수만큼 다른 경우 contiguous라 함

  • \(_2F_1(a,b;c;z)\)와 \(_2F_1(a\pm1,b;c;z)\)
    \(_2F_1(a,b;c;z)\)와 \(_2F_1(a1,b;c\pm1;z)\)
     
     

 

 

 

피카드-Fuchs 미분방정식

 

 

타원적분과 초기하급수

(증명)

\(\int_0^{\frac{\pi}{2}}\sin^{2n}\theta{d\theta}=\frac{\pi}{2}\frac{(\frac{1}{2})_n}{(1)_n}\) (감마함수) 이므로

\(K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\)

 

 

special values

\(\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\)

\(\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

expository articles

 

 

관련논문
  • Special values of the hypergeometric series II
    • Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
  • Special values of the hypergeometric series
    • Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991)  volume: 109  issue: 2  page: 257

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그