"원분다항식(cyclotomic polynomial)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5>개요</h5>
+
==개요</h5>
  
 
* [[원분체 (cyclotomic field)]] 의 연구에서 다룰 수 있는 주요 대상
 
* [[원분체 (cyclotomic field)]] 의 연구에서 다룰 수 있는 주요 대상
16번째 줄: 16번째 줄:
 
 
 
 
  
<h5>정의</h5>
+
==정의</h5>
  
 
* <math>\Phi_n(X) = \prod_\omega (X-\omega)</math><br>
 
* <math>\Phi_n(X) = \prod_\omega (X-\omega)</math><br>
27번째 줄: 27번째 줄:
 
 
 
 
  
<h5>원분다항식의 상호법칙</h5>
+
==원분다항식의 상호법칙</h5>
  
 
* <math>\Phi_n(x) \pmod p</math> 가 어떤 소수 <math>p</math> 에 대해 어떻게 분해되는가의 문제
 
* <math>\Phi_n(x) \pmod p</math> 가 어떤 소수 <math>p</math> 에 대해 어떻게 분해되는가의 문제
51번째 줄: 51번째 줄:
 
 
 
 
  
<h5>원분다항식 목록</h5>
+
==원분다항식 목록</h5>
  
 
<math>\begin{array}{l|ll}  &  $\phi (n) & \phi _n(x) \\ \hline  1 & 1 & -1+x \\  2 & 1 & 1+x \\  3 & 2 & 1+x+x^2 \\  4 & 2 & 1+x^2 \\  5 & 4 & 1+x+x^2+x^3+x^4 \\  6 & 2 & 1-x+x^2 \\  7 & 6 & 1+x+x^2+x^3+x^4+x^5+x^6 \\  8 & 4 & 1+x^4 \\  9 & 6 & 1+x^3+x^6 \\  10 & 4 & 1-x+x^2-x^3+x^4 \\  11 & 10 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10} \\  12 & 4 & 1-x^2+x^4 \\  13 & 12 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12} \\  14 & 6 & 1-x+x^2-x^3+x^4-x^5+x^6 \\  15 & 8 & 1-x+x^3-x^4+x^5-x^7+x^8 \\  16 & 8 & 1+x^8 \\  17 & 16 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16} \\  18 & 6 & 1-x^3+x^6 \\  19 & 18 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18} \\  20 & 8 & 1-x^2+x^4-x^6+x^8 \end{array}</math>
 
<math>\begin{array}{l|ll}  &  $\phi (n) & \phi _n(x) \\ \hline  1 & 1 & -1+x \\  2 & 1 & 1+x \\  3 & 2 & 1+x+x^2 \\  4 & 2 & 1+x^2 \\  5 & 4 & 1+x+x^2+x^3+x^4 \\  6 & 2 & 1-x+x^2 \\  7 & 6 & 1+x+x^2+x^3+x^4+x^5+x^6 \\  8 & 4 & 1+x^4 \\  9 & 6 & 1+x^3+x^6 \\  10 & 4 & 1-x+x^2-x^3+x^4 \\  11 & 10 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10} \\  12 & 4 & 1-x^2+x^4 \\  13 & 12 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12} \\  14 & 6 & 1-x+x^2-x^3+x^4-x^5+x^6 \\  15 & 8 & 1-x+x^3-x^4+x^5-x^7+x^8 \\  16 & 8 & 1+x^8 \\  17 & 16 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16} \\  18 & 6 & 1-x^3+x^6 \\  19 & 18 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18} \\  20 & 8 & 1-x^2+x^4-x^6+x^8 \end{array}</math>
57번째 줄: 57번째 줄:
 
 
 
 
  
<h5>역사</h5>
+
==역사</h5>
  
 
* http://functions.wolfram.com/Polynomials/Cyclotomic/35/ShowAll.html
 
* http://functions.wolfram.com/Polynomials/Cyclotomic/35/ShowAll.html
68번째 줄: 68번째 줄:
 
 
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들</h5>
  
 
*  [[#|오일러의 totient 함수]]
 
*  [[#|오일러의 totient 함수]]
94번째 줄: 94번째 줄:
 
 
 
 
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스</h5>
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxNWJiOTZkZTYtMDJhMS00MDg4LTljMzItNWFhYjg3MzMwNDRl&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxNWJiOTZkZTYtMDJhMS00MDg4LTljMzItNWFhYjg3MzMwNDRl&sort=name&layout=list&num=50
109번째 줄: 109번째 줄:
 
 
 
 
  
<h5>사전형태의 참고자료</h5>
+
==사전형태의 참고자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Cyclotomic_polynomial
 
* http://en.wikipedia.org/wiki/Cyclotomic_polynomial
 
* http://en.wikipedia.org/wiki/<br>
 
* http://en.wikipedia.org/wiki/<br>

2012년 11월 1일 (목) 01:46 판

이 항목의 스프링노트 원문주소

 

 

==개요

 

 

==정의

  • \(\Phi_n(X) = \prod_\omega (X-\omega)\)
    • 여기서 \(\omega\)는 primitive n-th root of unity (단위근)
  • 차수는 오일러의 totient 함수 를 사용하여 \(\varphi(n)\) 로 표현됨
  • \(x^n-1= \prod_{d|n}\Phi_d(x)\)

 

 

==원분다항식의 상호법칙

  • \(\Phi_n(x) \pmod p\) 가 어떤 소수 \(p\) 에 대해 어떻게 분해되는가의 문제

 

(정리)

\(p\in (\mathbb{Z}/n\mathbb{Z})^\times\)의 order가 \(r\)이라 하자. 즉 r이 \(p^r=1\pmod n\) 을 만족시키는 가장 작은 자연수라 하자.

그러면 \(\Phi_n(x) \pmod p\) 는 차수가 r인 기약다항식들의 곱으로 표현된다. 즉 \(\Phi_n(x) \pmod p\)의 분해는, \(p\pmod n\)에 의해 결정된다.

 

(따름정리)

\(n | p-1\)  \(\iff\)  \(\Phi_n(x) \pmod p\)는 일차식들로 분해된다

 

 

==원분다항식 목록

\(\begin{array}{l|ll} & $\phi (n) & \phi _n(x) \\ \hline 1 & 1 & -1+x \\ 2 & 1 & 1+x \\ 3 & 2 & 1+x+x^2 \\ 4 & 2 & 1+x^2 \\ 5 & 4 & 1+x+x^2+x^3+x^4 \\ 6 & 2 & 1-x+x^2 \\ 7 & 6 & 1+x+x^2+x^3+x^4+x^5+x^6 \\ 8 & 4 & 1+x^4 \\ 9 & 6 & 1+x^3+x^6 \\ 10 & 4 & 1-x+x^2-x^3+x^4 \\ 11 & 10 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10} \\ 12 & 4 & 1-x^2+x^4 \\ 13 & 12 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12} \\ 14 & 6 & 1-x+x^2-x^3+x^4-x^5+x^6 \\ 15 & 8 & 1-x+x^3-x^4+x^5-x^7+x^8 \\ 16 & 8 & 1+x^8 \\ 17 & 16 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16} \\ 18 & 6 & 1-x^3+x^6 \\ 19 & 18 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18} \\ 20 & 8 & 1-x^2+x^4-x^6+x^8 \end{array}\)

 

==역사

 

 

 

==관련된 항목들

 

 

수학용어번역

 

 

==매스매티카 파일 및 계산 리소스

 

 

==사전형태의 참고자료