"유한군의 표현론"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
12번째 줄: | 12번째 줄: | ||
* 대칭군 <math>S_n</math> 의 원소들은 <math>n \times n </math> 치환행렬로 나타낼 수 있음. | * 대칭군 <math>S_n</math> 의 원소들은 <math>n \times n </math> 치환행렬로 나타낼 수 있음. | ||
* 따라서 모든 유한군은 행렬로 나타낼 수 있음. | * 따라서 모든 유한군은 행렬로 나타낼 수 있음. | ||
+ | * 군 = 무언가의 대칭 = 대칭을 가지는 대상에 작용하는 변환 | ||
+ | * dihedral group을 정의하는 방법<br> | ||
+ | ** generator and relation을 사용하는 정의<br> | ||
+ | ** 다른 하나는 정다각형의 symmetry로 정의하는 방법 | ||
+ | * generator and relation을 사용하는 정의하는 경우는 여러가지 계산을 할수 있긴 하지만, 사실 기하학적인 정의없이는 의미없는 계산을 하고 있다고 생각하기 쉬움 | ||
+ | * 주어진 군이 작용하고 있는 어떤 대칭적인 수학적 대상을 알지 못하면, 군에 대한 이해를 했다고 말하기가 어려움. | ||
+ | * group이 어디에 act를 하고 있는가 혹은 이 group은 도대체 어디서 기원하는가<br> 하는 질문들이 representation theory of finite groups의 중요한 질문들 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
2009년 4월 16일 (목) 17:07 판
간단한 소개
- 군 표현론(group representation theory)
- 군을 벡터공간의 선형변환으로 나타내어, 군의 성질을 알아보려 함.
- 군론의 문제들을 선형대수를 통해서 이해할 수 있게 됨.
입문
- 코쉬정리에 의하면, 모든 유한군은 대칭군의 부분군으로 생각할 수 있음.
- 대칭군 \(S_n\) 의 원소들은 \(n \times n \) 치환행렬로 나타낼 수 있음.
- 따라서 모든 유한군은 행렬로 나타낼 수 있음.
- 군 = 무언가의 대칭 = 대칭을 가지는 대상에 작용하는 변환
- dihedral group을 정의하는 방법
- generator and relation을 사용하는 정의
- 다른 하나는 정다각형의 symmetry로 정의하는 방법
- generator and relation을 사용하는 정의
- generator and relation을 사용하는 정의하는 경우는 여러가지 계산을 할수 있긴 하지만, 사실 기하학적인 정의없이는 의미없는 계산을 하고 있다고 생각하기 쉬움
- 주어진 군이 작용하고 있는 어떤 대칭적인 수학적 대상을 알지 못하면, 군에 대한 이해를 했다고 말하기가 어려움.
- group이 어디에 act를 하고 있는가 혹은 이 group은 도대체 어디서 기원하는가
하는 질문들이 representation theory of finite groups의 중요한 질문들
추상적인 정의
- 벡터공간 V에 주어진 군의 표현이란, 준동형사상 \(\rho \colon G \to GL(V) \,\!\) 을 말한다.
하위주제들
- 순환군의 표현론 은 가장 간단한 경우이고, 일반적인 이론의 도움없이도 이해하기 쉬움.
하위페이지
재미있는 사실
관련된 단원
많이 나오는 질문
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
- http://ko.wikipedia.org/wiki/군_표현론
- http://en.wikipedia.org/wiki/group_representation_theory
- http://viswiki.com/en/
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
- 대한수학회 수학 학술 용어집
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com