"작도문제와 구적가능성"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/4359743">00 많이 찾는 주제들</a>페이지로 이동하였습니다.)
20번째 줄: 20번째 줄:
  
 
에서 <math>G=\sqrt{ab}</math> 라는 사실을 통해, 주어진 수의 제곱근도 자와 컴파스로 작도가능함을 알 수 있다.
 
에서 <math>G=\sqrt{ab}</math> 라는 사실을 통해, 주어진 수의 제곱근도 자와 컴파스로 작도가능함을 알 수 있다.
 
 
 
 
 
 
  
 
 
 
 
36번째 줄: 32번째 줄:
 
** [[가우스와 정17각형의 작도]]<br>
 
** [[가우스와 정17각형의 작도]]<br>
 
** [[그리스 3대 작도 불가능문제]]<br>
 
** [[그리스 3대 작도 불가능문제]]<br>
*** [[각의 삼등분(3등분, The trisection of an angle)|각의 3등분(The trisection of an angle)]]<br>
+
*** [[각의 삼등분(3등분, The trisection of an angle)]]<br>
 
*** [[두배의 부피를 갖는 정육면체(The duplication of the cube)]]<br>
 
*** [[두배의 부피를 갖는 정육면체(The duplication of the cube)]]<br>
*** [[원과 같은 넓이를 갖는 정사각형의 작도(원적문제 The quadrature of a circle)|원과 같은 넓이를 갖는 정사각형의 작도(The quadrature of the circle)]]<br>
+
*** [[원과 같은 넓이를 갖는 정사각형의 작도(원적문제 The quadrature of a circle)|원과 같은 넓이를 갖는 정사각형의 작도(원적문제, The quadrature of the circle)]]<br>
 
** [[정다각형의 작도]]<br>
 
** [[정다각형의 작도]]<br>
 
** [[히포크라테스의 초승달]]<br>
 
** [[히포크라테스의 초승달]]<br>
 
 
 
  
 
 
 
 

2010년 7월 28일 (수) 13:55 판

작도와 구적가능성
  • 고대 그리스인들에게는 눈금없는 자와 컴파스로 하는 작도 문제가 중요
  • 주어진 도형의 면적을 구하는 대신, 같은 면적을 갖는 정사각형을 작도하는 것으로 대신할 수 있음.
  • 평면도형이 구적가능하다는 것은 자와 컴파스로 같은 면적을 갖는 정사각형을 작도할 수 있다는 말.
  • 유명한 문제로 원의 구적, 즉 원과 같은 넓이의 정사각형 작도 문제가 있음.
    • 이 문제는 1882년이 되어서야 불가능한 것으로 해결됨.

 

 

대수적인 이해
  • 자와 컴파스로 작도가능한 수는 유리수체로부터 시작하여, 그 원소들의 제곱근을 추가하여 얻어지는 체확장을 반복해서 만들어진 체

 

[[Media:|]]

에서 \(G=\sqrt{ab}\) 라는 사실을 통해, 주어진 수의 제곱근도 자와 컴파스로 작도가능함을 알 수 있다.

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

관련기사

네이버 뉴스 검색 (키워드 수정)

 

 

블로그

 

이미지 검색

 

동영상