"합동수 문제 (congruent number problem)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
35번째 줄: 35번째 줄:
 
** 일반적으로는 그렇지 않음.
 
** 일반적으로는 그렇지 않음.
 
** 그러나 <math>x</math> 가 어떤 유리수의 제곱으로 주어지고, 그 분모가 짝수라면, 조건을 만족시키는 직각삼각형을 찾을 수 있다.
 
** 그러나 <math>x</math> 가 어떤 유리수의 제곱으로 주어지고, 그 분모가 짝수라면, 조건을 만족시키는 직각삼각형을 찾을 수 있다.
 +
 +
 
 +
 +
(정리)
 +
 +
자연수
 +
 +
a positive rational number n is congruent if and only if the equation y2 = x3 - n2x has a rational point with y not equal to 0
  
 
 
 
 
86번째 줄: 94번째 줄:
 
<h5>관련논문</h5>
 
<h5>관련논문</h5>
  
 +
* [http://www.jstor.org/stable/2320381 The Congruent Number Problem]<br>
 +
** Ronald Alter, The American Mathematical Monthly, Vol. 87, No. 1 (Jan., 1980), pp. 43-45
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
  

2009년 10월 13일 (화) 20:22 판

이 항목의 스프링노트 원문주소
  •  

 

간단한 소개
  • 자연수 중에서 세변이 모두 유리수 길이를 갖는 직각삼각형의 넓이로 나타날 수 있는 수를 congruent number라 함

 

 

타원곡선과의 관계
  • 직각삼각형의 세 변의 길이가 \(a,b,c\)로 주어졌다고 가정하고 그 넓이가 \(n\) 이라 하자.

\(a^2 + b^2 &=& c^2\\ \frac{ab}{2} &=& n\)

다음 방정식이 만족됨을 알 수 있다.

\((\frac{a^2-b^2}{4})^2=(\frac{c}{2})^4-n^2\)

\(u=\frac{c}{2}\), \(v=\frac{a^2-b^2}{4}\) 로 두자.

디오판투스 방정식 \(u^4-n^2=v^2\) 가 유리해를 가짐을 알 수 있다.

\(u^4-n^2=v^2\)에서 \(u^6-n^2u^2=u^2v^2\) 를 얻은 뒤, \(x=u^2\), \(y=uv\) 로 두면, 다음 타원곡선의 방정식을 얻는다.

\(y^2=x^3-n^2x\)

  • 따라서 세 변의 길이가 \(a,b,c\)이고 그 넓이가 \(n\)인 직각삼각형이 있으면, 타원곡선  \(y^2=x^3-n^2x\)의 유리해를 얻는다.
  • 그러면 역으로 타원곡선  \(y^2=x^3-n^2x\)의 유리해가 있을때, 이러한 조건을 만족시키는 직각삼각형을 찾을 수 있을까?
    • 일반적으로는 그렇지 않음.
    • 그러나 \(x\) 가 어떤 유리수의 제곱으로 주어지고, 그 분모가 짝수라면, 조건을 만족시키는 직각삼각형을 찾을 수 있다.

 

(정리)

자연수

a positive rational number n is congruent if and only if the equation y2 = x3 - n2x has a rational point with y not equal to 0

 

 

재미있는 사실

 

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그