"정수계수 이변수 이차형식(binary integral quadratic forms)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
3번째 줄: 3번째 줄:
 
* <math>ax^2+bxy+cy^2</math> 형태의 정수계수 다항식<br>
 
* <math>ax^2+bxy+cy^2</math> 형태의 정수계수 다항식<br>
 
*  자연수를 두 개의 제곱의 합으로 표현하는 문제에서 체계적인 연구가 시작<br>
 
*  자연수를 두 개의 제곱의 합으로 표현하는 문제에서 체계적인 연구가 시작<br>
 +
 +
 
  
 
 
 
 
10번째 줄: 12번째 줄:
 
*  판별식<br><math>\Delta=b^2-4ac</math><br>
 
*  판별식<br><math>\Delta=b^2-4ac</math><br>
 
*  이차형식의 동치류<br>
 
*  이차형식의 동치류<br>
**  다음 두 변환에 의한 이차형식은 모두 같은 동치류에 있다고 정의<br><math>x \to x+y</math> , <math>y \to y</math> <br><math>x \to x</math>, <math>y \to x+y</math><br> 행렬로 표현하면 각각 다음과 같으며 [[모듈라 군(modular group)]]을 생성함<br><math>\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} </math>, <math>\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} </math><br>
+
**  다음 두 변환에 의한 이차형식은 모두 같은 동치류에 있다고 정의<br><math>x \to x+y</math> , <math>y \to y</math><br><math>x \to x</math>, <math>y \to x+y</math><br> 행렬로 표현하면 각각 다음과 같으며 [[모듈라 군(modular group)]]을 생성함<br><math>\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} </math>, <math>\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} </math><br>
 
+
*  primitive <br> a,b,c 가 서로소인 이차형식<br>
 
+
 <br>
  
 
 
 
 

2009년 8월 10일 (월) 15:27 판

간단한 소개
  • \(ax^2+bxy+cy^2\) 형태의 정수계수 다항식
  • 자연수를 두 개의 제곱의 합으로 표현하는 문제에서 체계적인 연구가 시작

 

 

기본용어
  • 판별식
    \(\Delta=b^2-4ac\)
  • 이차형식의 동치류
    • 다음 두 변환에 의한 이차형식은 모두 같은 동치류에 있다고 정의
      \(x \to x+y\) , \(y \to y\)
      \(x \to x\), \(y \to x+y\)
      행렬로 표현하면 각각 다음과 같으며 모듈라 군(modular group)을 생성함
      \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \), \(\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \)
  • primitive 
    a,b,c 가 서로소인 이차형식
  •  

 

중요한 문제들
  • 주어진 이차형식이 표현할 수 있는 정수집합
  • 주어진 판별식\(\Delta\) 를 갖는 이차형식의 동치류를 분류하는 문제
    • \(\Delta=b^2-4ac\)를 만족시키는 모든 \(ax^2+bxy+cy^2\) 형태의 정수계수 다항식을 찾는 것
    • 동치류의 개수를 주어진 판별식에 대한 class number 라 함

 

상위 주제

 

 

 

하위페이지

 

 

재미있는 사실

 

 

역사
많이 나오는 질문과 답변

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

 

수학용어번역

 

참고할만한 자료

 

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상