"조화다항식(harmonic polynomial)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로)
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
11번째 줄: 11번째 줄:
 
* 아래에서는 세 변수의 경우를 다룸
 
* 아래에서는 세 변수의 경우를 다룸
 
* <math>P^{(l)}</math> : R^3에서 차수가 l인 [[동차다항식(Homogeneous polynomial)|동차다항식]]이 이루는 벡터공간
 
* <math>P^{(l)}</math> : R^3에서 차수가 l인 [[동차다항식(Homogeneous polynomial)|동차다항식]]이 이루는 벡터공간
* [[라플라시안(Laplacian)]]<br><math>\Delta : P^{(l)} \to P^{(l-2)}</math><br>
+
* [[라플라시안(Laplacian)]]:<math>\Delta : P^{(l)} \to P^{(l-2)}</math><br>
 
* <math>\ker \Delta = H^{(l)}</math> 를 R^3의 l차 조화다항식이라 한다
 
* <math>\ker \Delta = H^{(l)}</math> 를 R^3의 l차 조화다항식이라 한다
 
* 조화다항식의 정의역을 단위구면 <math>S^2</math>에 제한할 때, [[구면조화함수(spherical harmonics)]] 를 얻는다
 
* 조화다항식의 정의역을 단위구면 <math>S^2</math>에 제한할 때, [[구면조화함수(spherical harmonics)]] 를 얻는다

2013년 1월 12일 (토) 11:17 판

이 항목의 수학노트 원문주소

 

 

개요

 

 

예 : 2차 조화다항식

\(\begin{array}{l} x^2-y^2 \\ x y \\ x z \\ y z \\ y^2-z^2 \end{array}\)

 

 

예 : 3차 조화다항식

\(\begin{array}{l} -3 x^2 z+z^3 \\ -x^2 y+y z^2 \\ -x^3+3 x z^2 \\ -x^2 z+y^2 z \\ x y z \\ -3 x^2 y+y^3 \\ -x^3+3 x y^2 \end{array}\)

 

 

조화다항식과 구면조화함수

  • 조화다항식을 단위구면에서 정의된 함수로 볼 때, 구면조화함수(spherical harmonics) 를 얻는다

    • 2차인 조화함수 \(-x^2+2 i x y+y^2\)
    • 단위구면 (구면좌표계 참조) \(x = \sin (\theta ) \cos (\phi ),y= \sin (\theta ) \sin (\phi ),z= \cos (\theta )\)
    • \(\sin ^2(\theta ) (-\cos (2 \phi )+i \sin (2 \phi ))=-e^{-2 i \phi } \sin ^2(\theta )\)는 \(Y_{2}^{-2}(\theta,\phi)\) 의 상수배이다

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트