"초기하급수의 합공식"의 두 판 사이의 차이
72번째 줄: | 72번째 줄: | ||
<h5 style="MARGIN: 0px; LINE-HEIGHT: 2em;">Dougall 공식</h5> | <h5 style="MARGIN: 0px; LINE-HEIGHT: 2em;">Dougall 공식</h5> | ||
+ | |||
+ | http://dx.doi.org/10.1016/0022-247X(90)90375-P | ||
+ | |||
+ | |||
+ | |||
+ | |||
2010년 7월 1일 (목) 13:06 판
이 항목의 스프링노트 원문주소
개요
Chu-Vandermonde 공식
\(\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}\)
아래 가우스 공식에서 \(a=-n\)인 경우에 얻어진다
가우스 공식
\(\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\)
\(\;_2F_1 \left(a,b;\frac{1}{2}+\frac{a}{2}+\frac{b}{2};\frac{1}{2}\right) = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}+\frac{a}{2}+\frac{b}{2})}{\Gamma(\frac{1}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{b}{2})}\)
쿰머 공식
\(\,_2F_1(a,b;1+a-b;-1)=\dfrac{\Gamma(1+a-b)\,\Gamma(1+\frac{1}{2}a)}{\Gamma(1+a)\Gamma(1+\frac{1}{2}a-b)}\)
딕슨 공식
\(\;_3F_2 (a,b,c;1+a-b,1+a-c;1)= \frac{\Gamma(1+a/2)\Gamma(1+a/2-b-c)\Gamma(1+a-b)\Gamma(1+a-c)} {\Gamma(1+a)\Gamma(1+a-b-c)\Gamma(1+a/2-b)\Gamma(1+a/2-c)}\)
Bailey 공식
\(\;_2F_1 \left(a,1-a;c;\frac{1}{2}\right)= \frac{\Gamma(\frac{c}{2})\Gamma(\frac{1}{2}+\frac{c}{2})}{\Gamma(\frac{c}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{c}{2}-\frac{a}{2})}\)
Pfaff 공식
\(\,_3F_2(a,b,-n;c,1+a+b-c-n;1)=\dfrac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}\)
Dougall 공식
http://dx.doi.org/10.1016/0022-247X(90)90375-P
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
http://www.mathematik.uni-kassel.de/~koepf/hyper.html
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Vandermonde's_identity
- http://en.wikipedia.org/wiki/
- http://mathworld.wolfram.com/HypergeometricSummation.html
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)