"측지선"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “ * 구글 블로그 검색<br> ** http://blogsearch.google.com/blogsearch?q=” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “* [http://navercast.naver.com/science/list ” 문자열을 “” 문자열로) |
||
118번째 줄: | 118번째 줄: | ||
* [http://bomber0.byus.net/index.php/2008/10/03/806 비유클리드 기하학 입문(2) : 휘어진 공간]<br> | * [http://bomber0.byus.net/index.php/2008/10/03/806 비유클리드 기하학 입문(2) : 휘어진 공간]<br> | ||
− | + | 네이버 ] |
2012년 11월 2일 (금) 08:36 판
이 항목의 스프링노트 원문주소
개요
- 다양체 M의 coordinate chart 에서 \(\alpha(t)=(\alpha_1(t),\alpha_2(t),\cdots)\) 로 표현되는 곡선이 측지선이 될 조건은 크리스토펠 기호를 사용하여 다음 미분방정식으로 쓸 수 있다
\(\frac{d^2\alpha_k }{dt^2} + \sum_{i,j}\Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0\)
또는
\(\ddot{\alpha_k } + \sum_{i,j}\Gamma^{k}_{~i j }\dot{\alpha_i}\dot{\alpha_j }= 0\)
곡면의 측지선
- 곡선 (\((x(t),y(t))\) 가 다음의 미분방정식을 만족해야 한다
\(x''(t)+\Gamma _{1,1}{}^1 x'(t)^2+\Gamma _{1,2}{}^1 x'(t) y'(t)+\Gamma _{2,1}{}^1 x'(t) y'(t)+\Gamma _{2,2}{}^1 y'(t)^2=0\)
\(y''(t)+\Gamma _{1,1}{}^2 x'(t)^2+\Gamma _{1,2}{}^2 x'(t) y'(t)+\Gamma _{2,1}{}^2 x'(t) y'(t)+\Gamma _{2,2}{}^2 y'(t)^2=0\)
예
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/측지선
- http://en.wikipedia.org/wiki/Geodesics
- http://mathworld.wolfram.com/Geodesic.html
- http://www.wolframalpha.com/input/?i=geodesic
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
-
- http://www.jstor.org/action/doBasicSearch?Query=geodesic
- http://www.ams.org/mathscinet
- http://dx.doi.org/
관련기사
- 네이버 뉴스 검색 (키워드 수정)
블로그
네이버 ]