"타원적분(통합됨)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
2번째 줄: 2번째 줄:
  
 
* 역사적으로 [[타원 둘레의 길이]]를 구하는 적분에서 그 이름이 기원함.
 
* 역사적으로 [[타원 둘레의 길이]]를 구하는 적분에서 그 이름이 기원함.
* 타원  <math>\frac{x^2}{a^2}+\frac{y^2}{b^2}=1</math>의 둘레의 길이는 <math>4aE(k)</math> 로 주어짐.
+
* 타원  <math>\frac{x^2}{a^2}+\frac{y^2}{b^2}=1</math>의 둘레의 길이는 <math>4aE(k)</math> 로 주어짐.<br><math>k=\sqrt{1-\frac{b^2}{a^2}}</math><br><math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br>
* <math>k=\sqrt{1-\frac{b^2}{a^2}}</math><br><math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br>
 
  
 
 
 
 
15번째 줄: 14번째 줄:
 
여기서 <math>R(x,y)</math>는 <math>x,y</math>의 유리함수이고, <math>y^2</math>는 중근을 갖지 않는 <math>x</math>의 3차식 또는 4차식으로 주어짐.
 
여기서 <math>R(x,y)</math>는 <math>x,y</math>의 유리함수이고, <math>y^2</math>는 중근을 갖지 않는 <math>x</math>의 3차식 또는 4차식으로 주어짐.
  
*  예를 들자면,<br>
+
*  예를 들자면,<br>  <math>\int \frac{dx}{\sqrt{1-x^4}}</math><br><math>\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br>  <br>
**  <math>\int \frac{dx}{\sqrt{1-x^4}}</math>
 
** <math>\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>
 
 
 
 
 
  
 
 
 
 
31번째 줄: 26번째 줄:
 
 
 
 
  
<h5>special values of</h5>
+
<h5>special values of <math>K(k)</math></h5>
 +
 
 +
<math>K(\frac{1}{\sqrt{2}})</math>
  
 
+
[[#]]
  
 
 
 
 

2009년 11월 12일 (목) 15:35 판

타원 둘레의 길이
  • 역사적으로 타원 둘레의 길이를 구하는 적분에서 그 이름이 기원함.
  • 타원  \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)의 둘레의 길이는 \(4aE(k)\) 로 주어짐.
    \(k=\sqrt{1-\frac{b^2}{a^2}}\)
    \(E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\)

 

타원적분
  • 일반적으로 다음과 같은 형태로 주어지는 적분을 타원적분이라 부름

\(\int R(x,y)\,dx\)

여기서 \(R(x,y)\)는 \(x,y\)의 유리함수이고, \(y^2\)는 중근을 갖지 않는 \(x\)의 3차식 또는 4차식으로 주어짐.

  • 예를 들자면,
     \(\int \frac{dx}{\sqrt{1-x^4}}\)
    \(\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\)
     

 

타원적분의 예

\(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\)

\(E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\)

 

special values of \(K(k)\)

\(K(\frac{1}{\sqrt{2}})\)

#

 

덧셈공식
  • 파그나노의 공식
    \(\int_0^x{\frac{1}{\sqrt{1-x^4}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^4}}}dx = \int_0^{A(x,y)}{\frac{1}{\sqrt{1-x^4}}}dx\)
    여기서 \(A(x,y)=\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}\)
  • 오일러의 일반화
    \(p(x)=1+mx^2+nx^4\)일 때,
    \(\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx\)
    여기서 \(B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}\)

 

메모

 

관련된 다른 주제들

 

 

표준적인 도서 및 추천도서

 

 

위키링크

 

 

참고할만한 자료