"파피안(Pfaffian)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 +
 +
* [[파피안(Pfaffian)]]
  
 
 
 
 
15번째 줄: 17번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;"></h5>
+
 
 +
 
 +
<h5 style="margin: 0px; line-height: 2em;">교대행렬과 행렬식</h5>
 +
 
 +
*  2×2 교대행렬<br><math>\left( \begin{array}{cc}  0 & t_{1,2} \\  -t_{1,2} & 0 \end{array} \right)</math> 의 행렬식 <math>t_{1,2}^2</math><br>
 +
*  4×4 교대행렬<br><math>\left( \begin{array}{cccc}  0 & t_{1,2} & t_{1,3} & t_{1,4} \\  -t_{1,2} & 0 & t_{2,3} & t_{2,4} \\  -t_{1,3} & -t_{2,3} & 0 & t_{3,4} \\  -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 \end{array} \right)</math>, 행렬식 <math>\left(t_{1,4} t_{2,3}-t_{1,3} t_{2,4}+t_{1,2} t_{3,4}\right){}^2</math><br>
 +
*  6×6 교대행렬<br><math>\left( \begin{array}{cccccc}  0 & t_{1,2} & t_{1,3} & t_{1,4} & t_{1,5} & t_{1,6} \\  -t_{1,2} & 0 & t_{2,3} & t_{2,4} & t_{2,5} & t_{2,6} \\  -t_{1,3} & -t_{2,3} & 0 & t_{3,4} & t_{3,5} & t_{3,6} \\  -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 & t_{4,5} & t_{4,6} \\  -t_{1,5} & -t_{2,5} & -t_{3,5} & -t_{4,5} & 0 & t_{5,6} \\  -t_{1,6} & -t_{2,6} & -t_{3,6} & -t_{4,6} & -t_{5,6} & 0 \end{array} \right)</math>,<br> 행렬식 <math>\left(t_{1,6} t_{2,5} t_{3,4}-t_{1,5} t_{2,6} t_{3,4}-t_{1,6} t_{2,4} t_{3,5}+t_{1,4} t_{2,6} t_{3,5}+t_{1,5} t_{2,4} t_{3,6}-t_{1,4} t_{2,5} t_{3,6}+t_{1,6} t_{2,3} t_{4,5}-t_{1,3} t_{2,6} t_{4,5}+t_{1,2} t_{3,6} t_{4,5}-t_{1,5} t_{2,3} t_{4,6}+t_{1,3} t_{2,5} t_{4,6}-t_{1,2} t_{3,5} t_{4,6}+t_{1,4} t_{2,3} t_{5,6}-t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}\right){}^2</math><br>
 +
 
 +
 
 +
 
 +
 
  
<math>\left( \begin{array}{cc}  0 & t_{1,2} \\  -t_{1,2} & 0 \end{array} \right)</math>
+
파피안
 +
 
 +
 
  
 
 
 
 

2011년 11월 21일 (월) 10:30 판

이 항목의 수학노트 원문주소

 

 

개요
  • 교대행렬(alternating matrix, 또는 skew-symmetric matrix)의 행렬식은 어떤 다항식의 제곱이 되는 성질을 가진다
  • 교대행렬에 대해, 이 행렬식의 제곱근의 하나를 파피안으로 정의한다.
  • \( \operatorname{pf(A)}^2=\operatorname{det(A)}\)

 

 

 

교대행렬과 행렬식
  • 2×2 교대행렬
    \(\left( \begin{array}{cc} 0 & t_{1,2} \\ -t_{1,2} & 0 \end{array} \right)\) 의 행렬식 \(t_{1,2}^2\)
  • 4×4 교대행렬
    \(\left( \begin{array}{cccc} 0 & t_{1,2} & t_{1,3} & t_{1,4} \\ -t_{1,2} & 0 & t_{2,3} & t_{2,4} \\ -t_{1,3} & -t_{2,3} & 0 & t_{3,4} \\ -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 \end{array} \right)\), 행렬식 \(\left(t_{1,4} t_{2,3}-t_{1,3} t_{2,4}+t_{1,2} t_{3,4}\right){}^2\)
  • 6×6 교대행렬
    \(\left( \begin{array}{cccccc} 0 & t_{1,2} & t_{1,3} & t_{1,4} & t_{1,5} & t_{1,6} \\ -t_{1,2} & 0 & t_{2,3} & t_{2,4} & t_{2,5} & t_{2,6} \\ -t_{1,3} & -t_{2,3} & 0 & t_{3,4} & t_{3,5} & t_{3,6} \\ -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 & t_{4,5} & t_{4,6} \\ -t_{1,5} & -t_{2,5} & -t_{3,5} & -t_{4,5} & 0 & t_{5,6} \\ -t_{1,6} & -t_{2,6} & -t_{3,6} & -t_{4,6} & -t_{5,6} & 0 \end{array} \right)\),
    행렬식 \(\left(t_{1,6} t_{2,5} t_{3,4}-t_{1,5} t_{2,6} t_{3,4}-t_{1,6} t_{2,4} t_{3,5}+t_{1,4} t_{2,6} t_{3,5}+t_{1,5} t_{2,4} t_{3,6}-t_{1,4} t_{2,5} t_{3,6}+t_{1,6} t_{2,3} t_{4,5}-t_{1,3} t_{2,6} t_{4,5}+t_{1,2} t_{3,6} t_{4,5}-t_{1,5} t_{2,3} t_{4,6}+t_{1,3} t_{2,5} t_{4,6}-t_{1,2} t_{3,5} t_{4,6}+t_{1,4} t_{2,3} t_{5,6}-t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}\right){}^2\)

 

 

파피안

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들
  •  

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

링크