"패리 수열(Farey series)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지에 Farey_Sequence(1).png 파일을 등록하셨습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5>간단한 소개</h5> | ||
+ | * Fn 은 0부터 1사이의 기약분수중에서, 분모가 n이하인 녀석들의 집합<br> | ||
+ | ** F1 = {0⁄1, 1⁄1} | ||
+ | ** F2 = {0⁄1, 1⁄2, 1⁄1} | ||
+ | ** F3 = {0⁄1, 1⁄3, 1⁄2, 2⁄3, 1⁄1} | ||
+ | ** F4 = {0⁄1, 1⁄4, 1⁄3, 1⁄2, 2⁄3, 3⁄4, 1⁄1} | ||
+ | ** F5 = {0⁄1, 1⁄5, 1⁄4, 1⁄3, 2⁄5, 1⁄2, 3⁄5, 2⁄3, 3⁄4, 4⁄5, 1⁄1} | ||
+ | ** F6 = {0⁄1, 1⁄6, 1⁄5, 1⁄4, 1⁄3, 2⁄5, 1⁄2, 3⁄5, 2⁄3, 3⁄4, 4⁄5, 5⁄6, 1⁄1} | ||
+ | ** F7 = {0⁄1, 1⁄7, 1⁄6, 1/5, 1/4, 2/7, 1⁄3, 2⁄5, 3⁄7, 1⁄2, 4⁄7, 3⁄5, 2⁄3, 5⁄7, 3⁄4, 4⁄5, 5⁄6, 6⁄7, 1⁄1}[/pages/1984310/attachments/887402 Farey_Sequence(1).png] | ||
+ | ** 두 분수에 대해 '초딩들의 꿈의 분수덧셈'을 다음과 같이 정의하면, | ||
+ | |||
+ | <math>\frac{a}{b}\oplus\frac{c}{d}=\frac{a+c}{b+d}</math> | ||
+ | |||
+ | * 주어진 order의 Farey series에 등장하는 연속된 세 수를 보면, 가운데 수는 언제나 그 옆에 있는 두 수의 ‘초딩들의 꿈의 분수덧셈’을 통해서 얻어지는 것을 관찰할 수 있다.<br> | ||
+ | ** 이 관찰의 증명은 맨 아래의 '참고할만한 자료'에서 찾을 수 있음 | ||
+ | |||
+ | <h5 style="text-align: justify;">관련된 단원</h5> | ||
+ | |||
+ | * 정수<br> | ||
+ | ** 약수와 배수 | ||
+ | ** 서로소 | ||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 다른 주제들</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련도서 및 추천도서</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 대학 수학</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>참고할만한 자료</h5> |
2008년 10월 24일 (금) 17:12 판
간단한 소개
- Fn 은 0부터 1사이의 기약분수중에서, 분모가 n이하인 녀석들의 집합
- F1 = {0⁄1, 1⁄1}
- F2 = {0⁄1, 1⁄2, 1⁄1}
- F3 = {0⁄1, 1⁄3, 1⁄2, 2⁄3, 1⁄1}
- F4 = {0⁄1, 1⁄4, 1⁄3, 1⁄2, 2⁄3, 3⁄4, 1⁄1}
- F5 = {0⁄1, 1⁄5, 1⁄4, 1⁄3, 2⁄5, 1⁄2, 3⁄5, 2⁄3, 3⁄4, 4⁄5, 1⁄1}
- F6 = {0⁄1, 1⁄6, 1⁄5, 1⁄4, 1⁄3, 2⁄5, 1⁄2, 3⁄5, 2⁄3, 3⁄4, 4⁄5, 5⁄6, 1⁄1}
- F7 = {0⁄1, 1⁄7, 1⁄6, 1/5, 1/4, 2/7, 1⁄3, 2⁄5, 3⁄7, 1⁄2, 4⁄7, 3⁄5, 2⁄3, 5⁄7, 3⁄4, 4⁄5, 5⁄6, 6⁄7, 1⁄1}[/pages/1984310/attachments/887402 Farey_Sequence(1).png]
- 두 분수에 대해 '초딩들의 꿈의 분수덧셈'을 다음과 같이 정의하면,
\(\frac{a}{b}\oplus\frac{c}{d}=\frac{a+c}{b+d}\)
- 주어진 order의 Farey series에 등장하는 연속된 세 수를 보면, 가운데 수는 언제나 그 옆에 있는 두 수의 ‘초딩들의 꿈의 분수덧셈’을 통해서 얻어지는 것을 관찰할 수 있다.
- 이 관찰의 증명은 맨 아래의 '참고할만한 자료'에서 찾을 수 있음
관련된 단원
- 정수
- 약수와 배수
- 서로소
관련된 다른 주제들
관련도서 및 추천도서
관련된 대학 수학