"푸크스 미분방정식(Fuchsian differential equation)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> |
− | * [[ | + | * [[Fuchsian 미분방정식(Fuchsian differential equation)]]<br> |
− | + | ||
− | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | |
* 선형미분방정식<br><math>\frac{d^n w}{dz^n} + A_1(z)\frac{d^{n-1}w}{dz^{n-1}} + \cdots + A_{n-1}(z)\frac{dw}{dz} + A_n(z)w=0</math><br> 모든 특이점이 [[정규특이점(regular singular points)]]인 경우, 이를 Fuchsian 미분방정식이라 한다<br> | * 선형미분방정식<br><math>\frac{d^n w}{dz^n} + A_1(z)\frac{d^{n-1}w}{dz^{n-1}} + \cdots + A_{n-1}(z)\frac{dw}{dz} + A_n(z)w=0</math><br> 모든 특이점이 [[정규특이점(regular singular points)]]인 경우, 이를 Fuchsian 미분방정식이라 한다<br> | ||
18번째 줄: | 18번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5> |
29번째 줄: | 29번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5> |
41번째 줄: | 41번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5> |
47번째 줄: | 47번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5> |
* [[맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록|슈워츠 목록]]<br> | * [[맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록|슈워츠 목록]]<br> | ||
55번째 줄: | 55번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> |
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
68번째 줄: | 68번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5> |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
75번째 줄: | 75번째 줄: | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | * [http://www.research.att.com/ | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
82번째 줄: | 82번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5> |
* [http://www.jstor.org/stable/2154053 Liouvillian First Integrals of Differential Equations]<br> | * [http://www.jstor.org/stable/2154053 Liouvillian First Integrals of Differential Equations]<br> | ||
** Michael F. Singer, Transactions of the American Mathematical Society, Vol. 333, No. 2 (Oct., 1992), pp. 673-688 | ** Michael F. Singer, Transactions of the American Mathematical Society, Vol. 333, No. 2 (Oct., 1992), pp. 673-688 | ||
+ | * Algebraic Relations Among Solutions of Linear Differential Equations: Fano's Theorem<br> | ||
+ | ** Michael F. Singer, American Journal of Mathematics, Vol. 110, No. 1 (Feb., 1988), pp. 115-143 | ||
* [http://dx.doi.org/10.1007/3-540-15984-3_335 Elementary and Liouvillian solutions of linear differential equations]<br> | * [http://dx.doi.org/10.1007/3-540-15984-3_335 Elementary and Liouvillian solutions of linear differential equations]<br> | ||
** M. F. Singer and J. H. Davenport, 1985 | ** M. F. Singer and J. H. Davenport, 1985 | ||
106번째 줄: | 108번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5> |
* [http://books.google.com/books?id=txinPHIegGgC Linear Differential Equations and Group Theory from Riemann to Poincare]<br> | * [http://books.google.com/books?id=txinPHIegGgC Linear Differential Equations and Group Theory from Riemann to Poincare]<br> | ||
124번째 줄: | 126번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5> |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
135번째 줄: | 137번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5> |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> |
2010년 8월 14일 (토) 17:25 판
이 항목의 스프링노트 원문주소
개요
- 선형미분방정식
\(\frac{d^n w}{dz^n} + A_1(z)\frac{d^{n-1}w}{dz^{n-1}} + \cdots + A_{n-1}(z)\frac{dw}{dz} + A_n(z)w=0\)
모든 특이점이 정규특이점(regular singular points)인 경우, 이를 Fuchsian 미분방정식이라 한다 - 19세기에 많은 연구가 진행되었음
- 초기하 미분방정식(Hypergeometric differential equations) 은 대표적인 Fuchsian 미분방정식의 예이다
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.proofwiki.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Liouvillian First Integrals of Differential Equations
- Michael F. Singer, Transactions of the American Mathematical Society, Vol. 333, No. 2 (Oct., 1992), pp. 673-688
- Algebraic Relations Among Solutions of Linear Differential Equations: Fano's Theorem
- Michael F. Singer, American Journal of Mathematics, Vol. 110, No. 1 (Feb., 1988), pp. 115-143
- Elementary and Liouvillian solutions of linear differential equations
- M. F. Singer and J. H. Davenport, 1985
- Some Applications of Linear Groups to Differential Equations
- Michael F. Singer and Marvin D. Tretkoff, American Journal of Mathematics, Vol. 107, No. 5 (Oct., 1985), pp. 1111-1121
- Logarithmic singularities of Fuchs equations, and a criterion for the monodromy group to be finite
- N. V. Grigorenko, MATHEMATICAL NOTESVolume 33, Number 6, 453-454
- Liouvillian Solutions of n-th Order Homogeneous Linear Differential Equations
- Michael F. SingerAmerican Journal of Mathematics, Vol. 103, No. 4 (Aug., 1981), pp. 661-682
- Algebraic Solutions of nth Order Linear Differential Equations
- M. Singer, Proceedings of the Queen's University 1979 Conference on Number Theory, Queens Papers in Pure and Applied Mathematics, (54), pp. 379-420
- On Second Order Linear Differential Equations with Algebraic Solutions
- F. Baldassari, B. Dwork, American Journal of Mathematics, Vol. 101, No. 1 (Feb., 1979), pp. 42-76
- http://www.jstor.org/action/doBasicSearch?Query=fuchsian+differential
- http://www.ams.org/mathscinet
- http://dx.doi.org/10.1007/3-540-15984-3_335
관련도서
- Linear Differential Equations and Group Theory from Riemann to Poincare
- Jeremy J. Gray, 2008(2판)
- Lectures on algebraic solutions of hypergeometric differential equations
- Matsuda, Michihiko, 1985
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)