"푸앵카레 상반평면 모델"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
38번째 줄: | 38번째 줄: | ||
[/pages/3065168/attachments/2616929 hyperbolic_triangle.jpg] | [/pages/3065168/attachments/2616929 hyperbolic_triangle.jpg] | ||
− | * 이상삼각형(ideal triangle) <math>D=pq\infty</math>의 넓이<br><math>x(P)</math> 를 점 <math>P</math>의 <math>x</math>좌표라 하고, <math>x(p)=a</math>, <math>x(q)=b</math>라 두자.<br><math>A(D)=\int\int_{D}\frac{dx\,dy}{y^2}=\int_{a}^{b}\int_{\sqrt{1-x^2}}^{\infty}\frac{dy\,dx}{y^2}=\int_{a}^{b}\frac{1}{\sqrt{1-x^2}}\,dx=-\int_{\pi-\alpha}^{\beta+\beta'}\,d\theta=\pi-\alpha-\beta-\beta'</math><br><math>x=\cos \theta</math>로 | + | * 이상삼각형(ideal triangle) <math>D=pq\infty</math>의 넓이<br><math>x(P)</math> 를 점 <math>P</math>의 <math>x</math>좌표라 하고, <math>x(p)=a</math>, <math>x(q)=b</math>라 두자.<br><math>A(D)=\int\int_{D}\frac{dx\,dy}{y^2}=\int_{a}^{b}\int_{\sqrt{1-x^2}}^{\infty}\frac{dy\,dx}{y^2}=\int_{a}^{b}\frac{1}{\sqrt{1-x^2}}\,dx=-\int_{\pi-\alpha}^{\beta+\beta'}\,d\theta=\pi-\alpha-\beta-\beta'</math><br><math>x=\cos \theta</math>로 치환, <math>a=\cos (\pi-\alpha)</math>, <math>b=\cos (\beta+\beta')</math>을 사용하였음<br> |
+ | * 이상삼각형(ideal triangle) <math>D'=rq\infty</math>의 넓이<br> 위에서 얻은 결과를 적용할 수 있다<br><math>A(D')=\pi-(\pi-\gamma)-\beta'=\gamma-\beta'</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | (정리) | ||
+ | |||
+ | 세 각이 <math>\alpha, \beta, \gamma</math>인 쌍곡삼각형 <math>\Delta</math>의 넓이는 <math>\pi - \alpha- \beta- \gamma</math> 로 주어진다 | ||
+ | |||
+ | |||
+ | |||
+ | (증명) | ||
+ | |||
+ | <math>A(\Delta)=A(D)-A(D')</math> | ||
2009년 12월 4일 (금) 18:13 판
이 항목의 스프링노트 원문주소
개요
- 쌍곡기하학의 모델
- \(\mathbb{H}^2=\{z=x+iy\in\mathbb{C}|y>0\}\)
- 리만 메트릭
\(ds^2=\frac{dx^2+dy^2}{y^2}=\frac{dzd\overline{z}}{y^2}\) - 면적소
\(dA=\frac{dx\,dy}{y^2}\) - 두 점 사이의 거리
\(\rho(z_1,z_2)=2\tanh^{-1}\frac{|z_1-z_2|}{|z_1-\overline{z_2}|}\) - isometry 군
\(\operatorname{PSL}(2,\mathbb{R})\rtimes \mathbb{Z}/2\mathbb{Z}\) - 가우스곡률 -1
- 라플라시안
\(\Delta=-y^2(\partial_x^2+\partial_y^2)\)
측지선
삼각형의 넓이
[/pages/3065168/attachments/2616929 hyperbolic_triangle.jpg]
- 이상삼각형(ideal triangle) \(D=pq\infty\)의 넓이
\(x(P)\) 를 점 \(P\)의 \(x\)좌표라 하고, \(x(p)=a\), \(x(q)=b\)라 두자.
\(A(D)=\int\int_{D}\frac{dx\,dy}{y^2}=\int_{a}^{b}\int_{\sqrt{1-x^2}}^{\infty}\frac{dy\,dx}{y^2}=\int_{a}^{b}\frac{1}{\sqrt{1-x^2}}\,dx=-\int_{\pi-\alpha}^{\beta+\beta'}\,d\theta=\pi-\alpha-\beta-\beta'\)
\(x=\cos \theta\)로 치환, \(a=\cos (\pi-\alpha)\), \(b=\cos (\beta+\beta')\)을 사용하였음 - 이상삼각형(ideal triangle) \(D'=rq\infty\)의 넓이
위에서 얻은 결과를 적용할 수 있다
\(A(D')=\pi-(\pi-\gamma)-\beta'=\gamma-\beta'\)
(정리)
세 각이 \(\alpha, \beta, \gamma\)인 쌍곡삼각형 \(\Delta\)의 넓이는 \(\pi - \alpha- \beta- \gamma\) 로 주어진다
(증명)
\(A(\Delta)=A(D)-A(D')\)
테셀레이션
[/pages/3065168/attachments/2600953 dedekind1877.gif]
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- http://en.wikipedia.org/wiki/Poincaré_half-plane_model
- http://www.jstor.org/action/doBasicSearch?Query=
- http://dx.doi.org/
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)