"학부생을 위한 읽기 목록"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
* [http://www.jstor.org/stable/2695275 Mathematics in the 20th Century]<br> | * [http://www.jstor.org/stable/2695275 Mathematics in the 20th Century]<br> | ||
− | * Michael Atiyah | + | ** Michael Atiyah |
− | * <cite>The American Mathematical Monthly</cite>, Vol. 108, No. 7 (Aug. - Sep., 2001), pp. 654-666 | + | ** <cite>The American Mathematical Monthly</cite>, Vol. 108, No. 7 (Aug. - Sep., 2001), pp. 654-666 |
− | |||
− | |||
− | |||
* [http://www.jstor.org/stable/2306319 A Half-Century of Mathematics]<br> | * [http://www.jstor.org/stable/2306319 A Half-Century of Mathematics]<br> | ||
** Hermann Weyl | ** Hermann Weyl | ||
11번째 줄: | 8번째 줄: | ||
** Andre Weil | ** Andre Weil | ||
** <cite>The American Mathematical Monthly</cite>, Vol. 57, No. 5 (May, 1950), pp. 295-306 | ** <cite>The American Mathematical Monthly</cite>, Vol. 57, No. 5 (May, 1950), pp. 295-306 | ||
+ | * [http://www.jstor.org/stable/2318338 Historical Ramblings in Algebraic Geometry and Related Algebra]<br> | ||
+ | ** Shreeram S. Abhyankar | ||
+ | ** <cite>The American Mathematical Monthly</cite>, Vol. 83, No. 6 (Jun. - Jul., 1976), pp. 409-448 | ||
* [http://www.jstor.org/stable/2316199 What is a Sheaf?]<br> | * [http://www.jstor.org/stable/2316199 What is a Sheaf?]<br> |
2008년 10월 17일 (금) 09:54 판
- Mathematics in the 20th Century
- Michael Atiyah
- The American Mathematical Monthly, Vol. 108, No. 7 (Aug. - Sep., 2001), pp. 654-666
- A Half-Century of Mathematics
- Hermann Weyl
- The American Mathematical Monthly, Vol. 58, No. 8 (Oct., 1951), pp. 523-553
- The Future of Mathematics
- Andre Weil
- The American Mathematical Monthly, Vol. 57, No. 5 (May, 1950), pp. 295-306
- Historical Ramblings in Algebraic Geometry and Related Algebra
- Shreeram S. Abhyankar
- The American Mathematical Monthly, Vol. 83, No. 6 (Jun. - Jul., 1976), pp. 409-448
- What is a Sheaf?
- J. Arthur Seebach, Jr., Linda A. Seebach and Lynn A. Steen
- The American Mathematical Monthly, Vol. 77, No. 7 (Aug. - Sep., 1970), pp. 681-703
- From Triangles to Manifolds
- Shing-Shen Chern
- The American Mathematical Monthly, Vol. 86, No. 5 (May, 1979), pp. 339-349
- What Is Geometry?
- Shiing-Shen Chern
- The American Mathematical Monthly, Vol. 97, No. 8, Special Geometry Issue (Oct., 1990), pp. 679-686
- What is a Reciprocity Law?
- B. F. Wyman
- The American Mathematical Monthly, Vol. 79, No. 6 (Jun. - Jul., 1972), pp. 571-586
- A History of the Prime Number Theorem
- L. J. Goldstein
- The American Mathematical Monthly, Vol. 80, No. 6 (Jun. - Jul., 1973), pp. 599-615
- Error-Correcting Codes and Invariant Theory: New Applications of a Nineteenth-Century Technique
- N. J. A. Sloane
- The American Mathematical Monthly, Vol. 84, No. 2 (Feb., 1977), pp. 82-107
- Very Basic Lie Theory
- Roger Howe
- The American Mathematical Monthly, Vol. 90, No. 9 (Nov., 1983), pp. 600-623
- Roger Howe
- Number Theory as Gadfly
- B. Mazur
- The American Mathematical Monthly, Vol. 98, No. 7 (Aug. - Sep., 1991), pp. 593-610
- Exceptional Objects
- John Stillwell
- The American Mathematical Monthly, Vol. 105, No. 9 (Nov., 1998), pp. 850-858
- Finite Simple Groups
- James F. Hurley and Arunas Rudvalis
- The American Mathematical Monthly, Vol. 84, No. 9 (Nov., 1977), pp. 693-714
- Directed Reading Program in Mathematics (Rutgers)
- A Required Reading Program for Mathematics Majors.
- Brabenec, Robert L. , The American Mathematical Monthly. 94(4) (1987): 366-368
- Brabenec, Robert L. , The American Mathematical Monthly. 94(4) (1987): 366-368
- Another Required Reading Program for Mathematics Majors
- James C. Reber, The American Mathematical Monthly, Vol. 95, No. 9 (Nov., 1988), pp. 867-868
- James C. Reber, The American Mathematical Monthly, Vol. 95, No. 9 (Nov., 1988), pp. 867-868
- 김홍종 교수 추천도서