"열역학적 베테 가설 풀이(thermodynamic Bethe ansatz)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (새 문서: ==개요== * 산란행렬로부터 바닥상태의 에너지를 비섭동적으로 계산할 수 있는 방법 ==basic notions for particle scattering== * infinitely long cylinder...) |
Pythagoras0 (토론 | 기여) |
||
45번째 줄: | 45번째 줄: | ||
* a system which interacts dynamically via the scattering matrix and statistically via Fermi statistics<br><math>rm_{a}^{i}\cosh\theta = \epsilon_{a}^{i}(\theta)+\sum_{b=1}^{l}\sum_{j=1}^{\tilde{l}}\int_{-\infty}^{\infty} d\theta' \phi_{ab}^{ij}(\theta-\theta')\ln (1+e^{-\epsilon_{b}^{j}(\theta')})</math><br> where r is the inverse temperature and <math>m_{a}^{i}</math> the mass of particle (a,i)<br> | * a system which interacts dynamically via the scattering matrix and statistically via Fermi statistics<br><math>rm_{a}^{i}\cosh\theta = \epsilon_{a}^{i}(\theta)+\sum_{b=1}^{l}\sum_{j=1}^{\tilde{l}}\int_{-\infty}^{\infty} d\theta' \phi_{ab}^{ij}(\theta-\theta')\ln (1+e^{-\epsilon_{b}^{j}(\theta')})</math><br> where r is the inverse temperature and <math>m_{a}^{i}</math> the mass of particle (a,i)<br> | ||
+ | |||
+ | |||
+ | |||
+ | ==관련된 항목들== | ||
+ | * [[대수적 베테안싸쯔]] |
2012년 10월 13일 (토) 10:09 판
개요
- 산란행렬로부터 바닥상태의 에너지를 비섭동적으로 계산할 수 있는 방법
basic notions for particle scattering
- infinitely long cylinder of radius \(R\)
- N species of particles
- mass of particles \(m_{a}, a=1,\cdots, N\)
- rapidity \(\theta\) (also called spectral parameter or wave number)
- a notion from relativity
- http://en.wikipedia.org/wiki/Rapidity
- a notion from relativity
- energy \(E=m_{a}R\cosh \theta\)
- momentum \(p=m_{a}R\sinh \theta\)
- energy-momentum vector \(p^{\mu}=(E,P)\)
- S-matrix (factorizable scattering theory)
\(S_{ab}(\theta)\) - symmetric matrix kernel
\(\phi_{ab}(\theta)=-i\frac{d}{d\theta}\log S_{ab}(\theta)\) - spectral density of particles \(\epsilon_{a}(\theta)\)
- also called the pseudoenergy
- also called the pseudoenergy
- Y-system \(Y_{a}(\theta)=e^{-\epsilon_{a}(\theta)}\) i.e. exponential of spectral density
- ground state energy \(E(R)\)
- scaling function \(c(R)\) related to the central charge
- TBA equation
- equation to find the spectral density functions \(\epsilon_{a}(\theta)\)
- equation to find the spectral density functions \(\epsilon_{a}(\theta)\)
- UV limit
- plateau behaviour
- \(\epsilon_{a}(\theta)\) becomes constant in a large region for \(\theta\) when r(inverse temperature) is small
- plateau behaviour
- IR limit
limit
- energy \(E=m_{a}R\cosh \theta\)
- momentum \(p=m_{a}R\sinh \theta\)
- in the CFT limit, we regard \theta \to \infty for right movers and -\infty for left movers
- Thus we get, E=p and E=-p respectively in CFT limit
TBA equation
- a system which interacts dynamically via the scattering matrix and statistically via Fermi statistics
\(rm_{a}^{i}\cosh\theta = \epsilon_{a}^{i}(\theta)+\sum_{b=1}^{l}\sum_{j=1}^{\tilde{l}}\int_{-\infty}^{\infty} d\theta' \phi_{ab}^{ij}(\theta-\theta')\ln (1+e^{-\epsilon_{b}^{j}(\theta')})\)
where r is the inverse temperature and \(m_{a}^{i}\) the mass of particle (a,i)