"리만 곡면의 주기 행렬과 겹선형 관계 (bilinear relation)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (판 5개) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | http://en.wikipedia.org/wiki/Riemann_bilinear_relations | + | ==메모== |
+ | * http://en.wikipedia.org/wiki/Riemann_bilinear_relations | ||
+ | * [http://mathoverflow.net/questions/22286/intuition-behind-riemanns-bilinear-relations ]http://mathoverflow.net/questions/22286/intuition-behind-riemanns-bilinear-relations | ||
+ | * [http://www-nonlinear.physik.uni-bremen.de/%7Eprichter/pdfs/ThetaConst.pdf http://www-nonlinear.physik.uni-bremen.de/~prichter/pdfs/ThetaConst.pdf] | ||
+ | * http://magma.maths.usyd.edu.au/magma/handbook/text/1402 | ||
+ | * [http://www.math.harvard.edu/%7Ectm/home/text/class/harvard/sem/html/home/notes/99/course.pdf http://www.math.harvard.edu/~ctm/home/text/class/harvard/sem/html/home/notes/99/course.pdf] | ||
+ | * http://people.reed.edu/~jerry/311/theta.pdf | ||
+ | * <math>\omega_i\in \Omega^{1,0}</math> | ||
+ | * <math>(\omega_k,\omega_l)=i\int_{X} \omega_k \wedge \omega_l=0</math> | ||
+ | * <math>\omega\neq 0</math> | ||
+ | * <math>(\omega,\bar{\omega})=i\int_{X} \omega \wedge \bar{\omega}>0</math> | ||
− | |||
− | + | ==매스매티카 파일 및 계산 리소스== | |
− | + | * https://docs.google.com/file/d/0B8XXo8Tve1cxV1RCbzVJYWUwOEU/edit | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2013년 2월 12일 (화) 02:19 판
메모
- http://en.wikipedia.org/wiki/Riemann_bilinear_relations
- [1]http://mathoverflow.net/questions/22286/intuition-behind-riemanns-bilinear-relations
- http://www-nonlinear.physik.uni-bremen.de/~prichter/pdfs/ThetaConst.pdf
- http://magma.maths.usyd.edu.au/magma/handbook/text/1402
- http://www.math.harvard.edu/~ctm/home/text/class/harvard/sem/html/home/notes/99/course.pdf
- http://people.reed.edu/~jerry/311/theta.pdf
- \(\omega_i\in \Omega^{1,0}\)
- \((\omega_k,\omega_l)=i\int_{X} \omega_k \wedge \omega_l=0\)
- \(\omega\neq 0\)
- \((\omega,\bar{\omega})=i\int_{X} \omega \wedge \bar{\omega}>0\)