"응집 전이의 분배함수 증명"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(사용자 이름 삭제됨)
(사용자 이름 삭제됨)
(차이 없음)

2009년 11월 25일 (수) 11:33 판

이웃한 자리 사이의 상호작용이 존재하여 더이상 '영거리' 과정이라고 부를 수 없는;;; 이 모형을 뭐라 불러야 하나 궁금해서 논문을 보니 별 말이 없네요. '응집 전이(condensation transition)'라고 제목을 달았지만 '물질 수송(mass transport)' 모형이라든지 하는 말들도 있는 듯 합니다. 여튼 앞 글에서 분배함수 구하는 걸 증명 없이 썼는데, 이 글에서는 간단히 증명해보려고 합니다.

\(Z_N(z)=\sum_{m_1,\cdots,m_N}T_{m_1m_2}T_{m_2m_3}\cdots T_{m_Nm_1}={\rm Tr}\ T(z)^N\)

 

 

\(T_{mn}=z^{(m+n)/2}g(m,n)\)

\(\pi(m)=\frac{1}{N}\Big\langle \sum_i\delta_{m,m_i}\Big\rangle=\frac{1}{Z_N(z)}\sum_{m_2,\cdots,m_N}T_{mm_2}T_{m_2m_3}\cdots T_{m_Nm}\)

\(T\vec\phi=\lambda_{\rm max}\vec\phi,\ \vec\phi=\{\phi_0,\phi_1,\cdots,\phi_m,\cdots\}\)

\(Z_N(z)\simeq \lambda_{\rm max}^N,\ \pi(m)=\phi_m^2,\ \rho_c=\sum_m m\phi_m^2\)